The closure of skin wounds is essential for resistance against microbial pathogens, and keratinocyte migration is an important step in skin wound healing. Cathelicidin hCAP18/LL-37 is an innate antimicrobial peptide that is expressed in the skin and acts to eliminate microbial pathogens. Because hCAP18/LL-37 is up-regulated at skin wound sites, we hypothesized that LL-37 induces keratinocyte migration. In this study, we found that 1 μg/ml LL-37 induced the maximum level of keratinocyte migration in the Boyden chamber assay. In addition, LL-37 phosphorylated the epidermal growth factor receptor (EGFR) after 10 min, which suggests that LL-37-induced keratinocyte migration occurs via EGFR transactivation. To test this assumption, we used inhibitors that block the sequential steps of EGFR transactivation, such as OSU8-1, CRM197, anti-EGFR no. 225 Ab, and AG1478. All of these inhibitors completely blocked LL-37-induced keratinocyte migration, which indicates that migration occurs via HB-EGF-mediated EGFR transactivation. Furthermore, CRM197, anti-EGFR no. 225, and AG1478 blocked the LL-37-induced phosphorylation of STAT3, and transfection with a dominant-negative mutant of STAT3 abolished LL-37-induced keratinocyte migration, indicating the involvement of the STAT3 pathway downstream of EGFR transactivation. Finally, we tested whether the suppressor of cytokine signaling (SOCS)/cytokine-inducible Src homology 2-containing protein (CIS) family of negative regulators of STAT3 regulates LL-37-induced keratinocyte migration. Transfection with SOCS1/Jak2 binding protein or SOCS3/CIS3 almost completely abolished LL-37-induced keratinocyte migration. In conclusion, LL-37 induces keratinocyte migration via heparin-binding-EGF-mediated transactivation of EGFR, and SOCS1/Jak 2 binding and SOCS3/CIS3 negatively regulate this migration. The results of this study suggest that LL-37 closes skin wounds by the induction of keratinocyte migration.
Background: A severe adverse reaction to sulfasalazine therapy has been associated with hypersensitivity syndrome, the clinical features of which are similar to infectious mononucleosis. No serologic evidence of viral infections has been reported with this syndrome; however, human herpesvirus 6 infection has not been specifically investigated, which could cause an infectious mononucleosislike syndrome.Observations: We report 2 cases of hypersensitivity syndrome induced by the use of sulfasalazine. The clinical features of the syndrome appeared 18 and 32 days after administration of sulfasalazine. Clinical signs included a maculopapular rash progressing to exfoliative eryth-roderma, fever, and lymphadenopathy. Leukocytosis, atypical lymphocytes, liver dysfunction, and renal disturbance were also observed. In 1 patient, human herpesvirus 6 variant B was isolated from peripheral blood mononuclear cells, and in both patients anti-human herpesvirus 6 IgG titers increased considerably.Conclusions: Two cases of hypersensitivity syndrome due to sulfasalazine use were associated with the reactivation of human herpesvirus 6, which may be a required cause of hypersensitivity syndrome.
Toll-like receptor (TLR)3 is a receptor for virus-associated double-stranded RNA, and triggers antiviral immune responses during viral infection. Epidermal keratinocytes express TLR3 and provide an innate immune defense against viral infection. Since the intracellular regulatory mechanism is unknown, we hypothesized that the signal transducers and activators of transcription (STAT)-suppressors of cytokine signaling (SOCS) system regulates the innate immune response of keratinocytes. Treatment with polyinosinic-polycytidylic acid (poly(I:C)) resulted in the rapid translocation of IFN regulatory factor (IRF)-3 into the nucleus, followed by phosphorylation of STAT1 and STAT3. The activation of STATs by poly(I:C) probably occurs in an indirect fashion, through poly(I:C)-induced IFN. We infected cells with the dominant-negative forms of STAT1 (STAT1F), STAT3 (STAT3F), and SOCS1 using adenovirus vectors. Infection with STAT1F suppressed the induction of macrophage inflammatory protein (MIP)-1alpha by poly(I:C), whereas STAT3F had a minimal effect, which indicates that STAT1 mediates MIP-1alpha induction. SOCS1, which is a negative feedback regulator of STAT1 signaling, was induced by treatment with poly(I:C). SOCS1 infection inhibited the phosphorylation of STAT1 and significantly reduced poly(I:C)-induced MIP-1alpha production. Furthermore, STAT1-SOCS1 regulated poly(I:C)-induced TLR3 and IRF-7 expression. However, SOCS1 did not affect NF-kappaB signaling. Thus, the STAT1-SOCS1 pathway regulates the innate immune response via TLR3 signaling in epidermal keratinocytes.
We examined the possibility of whether angiotensin (Ang) II type 1 (AT1) and type 2 (AT2) receptor stimulation differentially regulates collagen production in mouse skin fibroblasts. Both AT1 and AT2 receptors were expressed in neonatal skin fibroblasts prepared from wild-type mice to a similar degree, and the AT1a receptor was exclusively expressed as opposed to the AT1b receptor. In wild-type fibroblasts, Ang II increased collagen synthesis accompanied by an increase in expression of tissue inhibitor of metalloproteinase (TIMP)-1, and these increases were inhibited by valsartan, an AT1 receptor blocker, but augmented by PD123319, an AT2 receptor antagonist. Ang II decreased basal and IGF-I-induced collagen production and inhibited TIMP-1 expression in neonatal skin fibroblasts prepared from AT1a knockout (KO) mice. These Ang II-mediated inhibitory effects on collagen production and TIMP-1 expression observed in AT1a KO fibroblasts were attenuated by the addition of PD123319 or a tyrosine phosphatase inhibitor, sodium orthovanadate, but not affected by a serine/threonine phosphatase inhibitor, okadaic acid. Moreover, we demonstrated that transfection of a catalytically inactive, dominant negative SHP-1 (Src homology 2-containing protein-tyrosine phosphatase-1) mutant inhibited the Ang II-mediated inhibitory effect on both collagen synthesis and TIMP-1 expression in AT1a KO fibroblasts. These results suggest that AT1a receptor stimulation increases collagen production in skin fibroblasts at least in part due to the inhibition of collagen degradation via the increase in TIMP-1 expression, whereas AT2 receptor stimulation exerts inhibitory effects on TIMP-1 expression, which is mediated at least partially by the activation of SHP-1, thereby possibly inhibiting collagen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.