Checkpoint genes cause cell cycle arrest when DNA is damaged or DNA replication is blocked. Although a human homolog of Chk1 (hChk1) has recently been reported to be involved in the DNA damage checkpoint through phosphorylation of Cdc25A, B, and C, it is not known at which phase(s) of the cell cycle hChk1 functions and how hChk1 causes cell cycle arrest in response to DNA damage. In the present study, we demonstrate that in normal human ®broblasts (MJ90), hChk1 is expressed speci®cally at the S to M phase of the cell cycle at both the RNA and protein levels and that it is localized to the nucleus at this time. hChk1 activity, as determined by phosphorylation of Cdc25C, is readily detected at the S to M phase of the cell cycle, and DNA damage induced by UV or ionizing radiation does not enhance the expression of hChk1 or its activity. Furthermore, hChk1 exists in an active form at the S to M phase in ®broblasts derived from patients with ataxia telangiectasia (AT) which lack the functional AT mutated (ATM) gene product, suggesting that hChk1 expression is independent of functional ATM. Taken together with the ®ndings that phosphorylation of Cdc25C on serine 216 is increased at the S to M phase, it is suggested that at this particular phase of the cell cycle, even in the absence of DNA damage, hChk1 phosphorylates Cdc25C on serine 216, which is considered to be a prerequisite for the G2/M checkpoint. Thus, hChk1 may play an important role in keeping Cdc25C prepared for responding to DNA damage by phosphorylating its serine residue at 216 during the S to M phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.