BackgroundGiven three signed permutations, an inversion median is a fourth permutation that minimizes the sum of the pairwise inversion distances between it and the three others. This problem is NP-hard as well as hard to approximate. Yet median-based approaches to phylogenetic reconstruction have been shown to be among the most accurate, especially in the presence of long branches. Most existing approaches have used heuristics that attempt to find a longest sequence of inversions from one of the three permutations that, at each step in the sequence, moves closer to the other two permutations; yet very little is known about the quality of solutions returned by such approaches.ResultsRecently, Arndt and Tang took a step towards finding longer such sequences by using sets of commuting inversions. In this paper, we formalize the problem of finding such sequences of inversions with what we call signatures and provide algorithms to find maximum cardinality sets of commuting and noninterfering inversions.ConclusionOur results offer a framework in which to study the inversion median problem, faster algorithms to obtain good medians, and an approach to study characteristic events along an evolutionary path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.