A novel and general backbone amide linker (BAL) strategy has been devised for preparation of C-terminal modified peptides containing hindered, unreactive, and/or sensitive moieties, in concert with N(alpha)()-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis protocols. This strategy comprises (i) start of peptide synthesis by anchoring the penultimate residue, with its carboxyl group orthogonally protected, through the backbone nitrogen, (ii) continuation with standard protocols for peptide chain elongation in the C --> N direction, (iii) selective orthogonal removal of the carboxyl protecting group, (iv) solid-phase activation of the pendant carboxyl and coupling with the desired C-terminal residue, and (v) final cleavage/deprotection to release the free peptide product into solution. To illustrate this approach, several model peptide p-nitroanilides and thioesters have been prepared in excellent yields and purities, with minimal racemization. Such compounds are very difficult to prepare by standard Fmoc chemistry, including the BAL strategy as originally envisaged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.