Stimuli-responsive reversible coloration-change materials represent a highly demanded type of smart systems useful for a wide variety of applications, with a significant growing interest in multicolor abilities. In particular, electrochromic materials have received a great deal of attention due to their versatility and broad range of industrial uses. However, most of the existing electrochromic technologies provide a single coloration, while achieving multiple colors based on simple approaches remains a challenge. The present article reports on PVA gel-based electrochromic devices, containing a single viologen, providing a colorless and two different well-defined colored states. The successful fabrication of a device, based on two viologens (multi-EC gel) with a simple architecture (glass/TCO/multi-EC gel/TCO/glass), with five different multiswitchable colors based on four-zoned electrodes (rainbow-like ECD) is also demonstrated. This novel easy-to-make multichromic system represents a significant breakthrough toward the generation of full-color devices, expanding the potential of electrochromic technology.
Electrochromic materials have extensively been investigated because of their potential fields of application, with a significant growing interest in expanding the provided colorations. However, among all palette of colors, colorless electrochromic devices (ECDs) that provide neutral-grayish colorations with a simple configuration remain a key challenge. The present study reports on the synthesis of asymmetrically 1-alkyl-1'-aryl-substituted viologens and their incorporation in PVA-borax gel polyelectrolytes for ECDs that constitute the simplest device architecture (glass/TCO/EC gel/TCO/glass). We demonstrate herein that these EC gels based on single asymmetric viologens provide more neutral-colored state than their corresponding symmetric viologens (a* and b* ≤ |15|), while maintaining satisfactory colorless bleached state (%T > 70% in the whole visible range), transmittance changes (i.e., ∼60%) and cyclability (i.e., ∼15 000 cycles). Additionally, the effect of the solvent on the observed coloration has also been investigated. This easy-to-make neutral-grayish color ECDs may significantly extend the potential of the electrochromic technology, because they adapt better aesthetically to the surrounding environment, as they are easier to implement in different applications.
A novel slime‐type electrochromic system based on polyvinyl alcohol (PVA) and borax, in combination with a viologen and a redox pair has been developed. On top of overcoming the limitations of both liquid electrolytes, such as the risk of leakage and difficulty of assembly and of solid electrolytes, such as limited transparency and slow response time, this easy‐to‐make slime electrochromic system offers an excellent wettability and transparency and achieves high‐performance in terms of optical contrast (>65 % at 550 nm), switching time (<5 s as estimated for 90 % of the total transmittance change at 550 nm) and cyclability (8 000–10 000). For the electrochromic devices shown here, the CIELAB 1976 color space coordinates at the “on” state were L*=7.12, a*=18.08, and b*=−21.02, corresponding to a purple color. The color efficiencies were 75.5 cm2 C−1 and 149.3 cm2 C−1 for coloration and bleaching processes respectively.
Electrochromic devices (ECDs) have aroused great interest because of their potential applicability in displays and smart systems, including windows, rearview mirrors, and helmet visors. In the last decades, different device structures and materials have been proposed to meet the requirements of commercial applications to boost market entry. To this end, employing simple device architectures and achieving a competitive electrolyte are crucial to accomplish easily implementable, high-performance ECDs. The present review outlines devices comprising gel electrolytes as a single electroactive layer (“all-in-one”) ECD architecture, highlighting some advantages and opportunities they offer over other electrochromic systems. In this context, gel electrolytes not only overcome the drawbacks of liquid and solid electrolytes, such as liquid’s low chemical stability and risk of leaking and soil’s slow switching and lack of transparency, but also exhibit further strengths. These include easier processability, suitability for flexible substrates, and improved stabilization of the chemical species involved in redox processes, leading to better cyclability and opening wide possibilities to extend the electrochromic color palette, as discussed herein. Finally, conclusions and outlook are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.