The variability of mtDNA was analysed in local sheep breeds reared throughout Turkey, for which a fragment of the D-loop region and the complete cytochrome b were sequenced. Phylogenetic analyses performed independently for the D-loop and the Cyt b gene revealed three clearly separated clusters indicating three major maternal lineages, two of which had been previously described as types B and A. The new type, C, was present in all the breeds analysed and showed considerable mtDNA variability. Divergence time was obtained on the basis of Cyt b gene and was estimated to be around 160,000-170,000 years ago for lineages B and A, whereas the divergence of lineage C proved to have occurred earlier (between 450,000 and 750,000 years ago). These times greatly predate domestication and suggest that the origin of modern sheep breeds was more complex than previously thought and that at least three independent sheep domestication events occurred. Our results, together with archaeological information and the current wild sheep populations in the Near East region support the high importance of this area in the sheep domestication process. Finally, the evidence of a third maternal lineage has important implications regarding the history of modern sheep.
The BTB (bric-a-brac, tramtrak and broad complex) ⁄ POZ (poxvirus zinc finger) domain is a proteinprotein interaction domain first described in several proteins of Drosophila melanogaster and poxvirus [1,2]. BTB ⁄ POZ domain-containing proteins constitute a diverse group of proteins involved in transcriptional repression, cytoskeletal regulation, and ion channel function [3]. More recently, some BTB proteins have been characterized as substrate-specific adaptors for cullin(CUL)3-based E3 ligases [4][5][6][7]. The BTB domain of these substrate-specific adaptors binds to CUL3, whereas additional domains in these polypeptides, such as zinc fingers, meprin and traf homology (MATH) domain, and Kelch repeats, work as substrate recognition domains. The first protein shown to be regulated by a CUL3 ligase was MEI-1 in Caenorhaditis elegans. This protein is part of the katanin-like microtubule severing complex [5,6] Potassium channel tetramerization domain (KCTD) proteins contain a bric-a-brac, tramtrak and broad complex (BTB) domain that is most similar to the tetramerization domain (T1) of voltage-gated potassium channels. Some BTB-domain-containing proteins have been shown recently to participate as substrate-specific adaptors in multimeric cullin E3 ligase reactions by recruiting proteins for ubiquitination and subsequent degradation by the proteasome. Twenty-two KCTD proteins have been found in the human genome, but their functions are largely unknown. In this study, we have characterized KCTD5, a new KCTD protein found in the cytosol of cultured cell lines. The expression of KCTD5 was upregulated post-transcriptionally in peripheral blood lymphocytes stimulated through the T-cell receptor. KCTD5 interacted specifically with cullin3, bound ubiquitinated proteins, and formed oligomers through its BTB domain. Analysis of the interaction with cullin3 showed that, in addition to the BTB domain, some amino acids in the N-terminus of KCTD5 are required for binding to cullin3. These findings suggest that KCTD5 is a substrate-specific adaptor for cullin3-based E3 ligases.Abbreviations AU, arbitrary unit; BTB, bric-a-brac, tramtrak and broad complex; CT, cycle threshold; CUL, cullin; GFP, green fluorescent protein; GST, glutathione S-transferase; HA, hemagglutinin; IL-2, interleukin-2; KCTD, potassium channel tetramerization domain; MATH, meprin and traf homology; PBL, peripheral blood lymphocyte; PHA, phytohemagglutinin; PMA, 4b-phorbol 12-myristate 13-acetate; POZ, poxvirus zinc finger; Ub, ubiquitin.
Improvement of milk production traits in dairy sheep is required to increase the competitiveness of the industry and to maintain the production of high quality cheese in regions of Mediterranean countries with less favourable conditions. Additional improvement over classical selection could be reached if genes with significant effects on the relevant traits were specifically targeted by selection. However, so far, few studies have been undertaken to detect quantitative trait loci (QTL) in dairy sheep. In this study, we present a complete genome scan performed in a commercial population of Spanish Churra sheep to identify chromosomal regions associated with phenotypic variation observed in milk production traits. Eleven half-sib families, including a total of 1213 ewes, were analysed following a daughter design. Genome-wise multi-marker regression analysis revealed a genome-wise significant QTL for milk protein percentage on chromosome 3. Eight other regions, localized on chromosomes 1, 2, 20, 23 and 25, showed suggestive significant linkage associations with some of the analysed traits. To our knowledge, this study represents the first complete genome scan for milk production traits reported in dairy sheep. The experiment described here shows that analysis of commercial dairy sheep populations has the potential to increase our understanding of the genetic determinants of complex production-related traits.
In this study, we used the Illumina OvineSNP50 BeadChip to conduct a genome-wide association (GWA) analysis for milk production traits in dairy sheep by analyzing a commercial population of Spanish Churra sheep. The studied population consisted of a total of 1,681 Churra ewes belonging to 16 half-sib families with available records for milk yield (MY), milk protein and fat yields (PY and FY) and milk protein and fat contents (PP and FP). The most significant association identified reached experiment-wise significance for PP and FP and was located on chromosome 3 (OAR3). These results confirm the population-level segregation of a previously reported QTL affecting PP and suggest that this QTL has a significant pleiotropic effect on FP. Further associations were detected at the chromosome-wise significance level on 14 other chromosomal regions. The marker on OAR3 showing the highest significant association was located at the third intron of the alpha-lactalbumin (LALBA) gene, which is a functional and positional candidate underlying this association. Sequencing this gene in the 16 Churra rams of the studied resource population identified additional polymorphisms. One out of the 31 polymorphisms identified was located within the coding gene sequence (LALBA_g.242T>C) and was predicted to cause an amino acid change in the protein (Val27Ala). Different approaches, including GWA analysis, a combined linkage and linkage disequilibrium study and a concordance test with the QTL segregating status of the sires, were utilized to assess the role of this mutation as a putative QTN for the genetic effects detected on OAR3. Our results strongly support the polymorphism LALBA_g.242T>C as the most likely causal mutation of the studied OAR3 QTL affecting PP and FP, although we cannot rule out the possibility that this SNP is in perfect linkage disequilibrium with the true causal polymorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.