Oat bran muffins, containing 4 or 8 g of β‐glucan per two‐muffin serving, were prepared with or without β‐glucanase treatment to produce a range of β‐glucan molecular weights from 130,000 to just over 2 million. Following an overnight fast, the glycemic responses elicited by the untreated and treated muffins was measured in 10 healthy subjects and compared with a control whole wheat muffin. Taken all together, the 4‐g β‐glucan/serving muffins reduced blood glucose peak rise (PBGR) by 15 ± 6% compared with the control. The 8‐g β‐glucan/serving muffins had a significantly greater effect (44 ± 5% reduction compared with the control, P < 0.05). The efficacy of the muffins decreased as the molecular weight was reduced from a 45 ± 6% reduction in PBGR (P < 0.05) for the untreated muffins (averaged of both serving sizes) to 15 ± 6% (P < 0.05) for muffins with the lowest molecular weight. As the molecular weight was reduced from 2,200,000 to 400,000, the solubility of the β‐glucan increased from a mean of 44 to 57%, but as the molecular weight was further decreased to 120,000, solubility fell to 26%. There was a significant correlation (r2 = 0.729, P < 0.001) between the peak blood glucose and the product of the extractable β‐glucan content and the molecular weight of the β‐glucan extracted.
The tendency of mixed linkage oat beta-glucan to form viscous solutions is generally assumed to be related to its ability to lower serum cholesterol levels in humans. However, the association has not been clearly demonstrated. To conduct a clinical trial showing the relationship between LDL-cholesterol levels and viscosity, a series of extruded oat bran cereals were prepared in which the beta-glucan had a range of molecular weights and modified solubility. An extraction protocol using physiological enzymes at 37 degrees C was used to estimate the effect that the cereals would have on gut viscosity. By reducing the molecular weight from 1,930,000 to 251,000 g/mol, the apparent viscosity in the physiological extract dropped from 2900 to 131 mPa.s (at 30 s(-1)). Microscopic examination showed that as the extrusion conditions were made more severe, to cause depolymerization, the integrity of the cell walls was lost and beta-glucan dispersed throughout the cereal. Differences in the hardness and density of the extruded cereals were also evident as the molecular weight was reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.