Integrity of the thymus during perinatal life is necessary for a proper maturation of the pituitarygonadal axis in mice and other mammalian species. Thus congenitally athymic (nude) female mice show significantly reduced levels of circulating gonadotropins, a fact that seems to be causally related to a number of reproductive derangements described in these mutants. Interestingly, a number of in vitro studies suggest that the thymic peptide thymulin may be involved in thymus-pituitary communication. To determine the consequences of low serum thymulin in otherwise normal animals, we induced short (8 days)-and long (33 days)-term thymulin deficiency in C57BL/6 mice by neonatally injecting (intraperitoneally) an anti-thymulin serum and assessed their circulating gonadotropin levels at puberty and thereafter. Control mice received an irrelevant antiserum. Gonadotropins were measured by radioimmunoassay and thymulin by bioassay. Both long-and short-term serum thymulin immunoneutralization resulted in a significant reduction in the serum levels of gonadotropins at 33 and 45 days of age. Subsequently, we injected (intramuscularly) an adenoviral vector harboring a synthetic DNA sequence (5′-ATGCAAGCCAAATCTCAAGGTGGATCCAACTAGTAG-3′) encoding a biologically active analog of thymulin, methionine-FTS, in newborn nude mice (which are thymulin deficient) and measured circulating gonadotropin levels when the animals reached 52 days of age. It was observed that neonatal thymulin gene therapy in the athymic mice restored their serum thymulin levels and prevented the reduction in circulating gonadotropin levels that typically emerges in these mutants after puberty. Our results indicate that thymulin plays a relevant physiological role in the thymuspituitary-gonadal axis.
We assessed the ability of thymulin, a zinc-dependent nonapeptide produced by the thymic epithelial cells, to influence the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from dispersed anterior pituitary (AP) cells from young, adult, and senescent female rats. Perifusion of young and senescent AP cells with thymulin doses of 10(-6) to 10(-5) M gave a significant stimulatory response for LH but not FSH. Gonadotropin release was always lower in the senescent cells. AP cells from both age groups incubated with 10(-8) to 10(-3) M thymulin showed a time- and dose-dependent response for both gonadotropins, with a maximal stimulation at 10(-7) M. Preincubation of thymulin with an antithymulin serum completely quenched the secretagogue activity of the hormone. Coincubation of thymulin with the secretagogue gonadotropin-releasing hormone (GnRH) revealed a synergistic effect on LH release and an additive effect on the release of FSH. The calcium chelator EGTA blocked the gonadotropin-releasing activity of thymulin in AP cells. The cAMP enhancers, caffeine, NaF, and forskolin significantly increased the thymulin-stimulated release of gonadotropins. The inositol phosphate enhancer LiCl potentiated the action of thymulin on gonadotropins. It is concluded that the gonadotropin-releasing activity documented here for thymulin is an age- and receptor-dependent effect mediated in part by calcium, cAMP, and inositol phosphates.
It is known that alternating magnetic field applications on eukaryotic cells loaded with single domain iron oxide nanoparticles result in high hyperthermic citotoxicity leading to cell dead. Although magnetic hyperthermia therapy for cancer tumours is being developed under this idea, some in vitro assays have shown controversial results indicating that alternating magnetic field triggers large apoptotic effect without significant culture-temperature increase. In agreement with these observations a huge lowering in nanoparticle specific heating rates, when going from the colloidal suspension to cell endosomes, together with cell death, has been reported. Here, we propose a new methodology to determine the occurrence of local heating in cells when alternating magnetic fields in the radiofrequency field range are applied to cell cultures holding very low iron oxide concentrations, being these concentrations insufficient to produce a global cell-culture temperature increase up to therapeutic values. To this end, human lung adenocarcinoma cells (A549 cell line) were transduced with a lentiviral vector encoding the expression of the enhanced green fluorescence protein, EGFP, under the action of the inducible human heat shock protein 70B promoter. This modified A549 cell line was incubated with aqueous suspensions of magnetite core nanoparticles (uncoated or covered with coating agents like citric acid or silicon oxide), and exposed to radiofrequency fields. The application of an alternating magnetic field to cell cultures loaded with nanoparticles resulted in no global temperature increase but EGFP expression. Stress-inducible gene expression scales with uptake
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.