Chemotherapy protocols for childhood cancers are still problematic due to the high toxicity associated with chemotherapeutic agents and incorrect dosing regimens extrapolated from adults. Nanotechnology has demonstrated significant ability to reduce toxicity of anticancer compounds. Improvement in the therapeutic index of cytostatic drugs makes this strategy an alternative to common chemotherapy in adults. However, the lack of nanomedicines specifically for pediatric cancer care raises a medical conundrum. This review highlights the current state and progress of nanomedicine in pediatric cancer and discusses the real clinical challenges and opportunities.
A new method to form a nanoparticle-structured hydrogel is reported; it is based on the drug being loaded into the nanoparticles to form a solid structure. A lipophilic form of gemcitabine (modified lauroyl), an anti-cancer drug, was encapsulated in lipid nanocapsules (LNCs), using a phase-inversion temperature process. A gel was formed spontaneously, depending on the LNC concentration. The drug loading, measured with total entrapment efficiency, and the rheological properties of the gel were assessed. Physical studies (surface tension measurements) showed that modified gemcitabine was localised at the oil-water interface of the LNC, and that the gemcitabine moieties of the prodrug were exposed to the water phase. This particular assembly promoted inter-LNC interactions via hydrogen bonds between gemcitabine moieties that led to an LNC gel structure in water, without a matrix, like a tridimensional pearl necklace. Dilution of the gel produced a gemcitabine-loaded LNC suspension in water, and these nanoparticles presented cytotoxic activity to various cancer cell lines to a greater degree than the native drug. Finally, the syringeability of the formulation was successfully tested and perspectives of its use as a nanomedicine (intratumoural or subcutaneous injection) can be foreseen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.