Filamentous inclusions composed of the microtubule-associated protein tau are a defining characteristic of a large number of neurodegenerative diseases. Here we show that tau degradation in stably transfected and non-transfected SH-SY5Y cells is blocked by the irreversible proteasome inhibitor lactacystin. Further, we find that in vitro, natively unfolded tau can be directly processed by the 20S proteasome without a requirement for ubiquitylation, and that a highly reproducible pattern of degradation intermediates is readily detectable during this process. Analysis of these intermediates shows that 20S proteasomal processing of tau is bi-directional, proceeding from both N-and C-termini, and that populations of relatively stable intermediates arise probably because of less efficient digestion of the C-terminal repeat region. Our results are consistent with an in vivo role for the proteasome in tau degradation and support the existence of ubiquitin-independent pathways for the proteasomal degradation of unfolded proteins.
Huntington's disease (HD) is thought to show true dominance, since subjects with two mutant alleles have been reported to have similar ages at onset of disease compared to heterozygous sibs. We have investigated this phenomenon using a cell culture model. Protein aggregate formation was used as an indicator for pathology, as intraneuronal huntingtin inclusions are associated with pathology in vitro and in vivo. We showed that cytoplasmic and nuclear aggregates are formed by constructs comprising part of exon 1 of huntingtin with 41, 51, 66, or 72 CAG repeats, in a rate that correlates with repeat number. No inclusions were seen with 21 CAG repeat constructs. Mutant and wild type huntingtin fragments can be sequestered into inclusions seeded by a mutant huntingtin. Wild type huntingtin did not enhance or interfere with protein aggregation. The rate of protein aggregation was dose dependent for all mutant constructs tested. These experiments suggested a model for the dominance observed in HD; the decrease in the age at onset of a mutant homozygote may be small compared to the variance in the age at onset for that specific repeat number in heterozygotes. Our experiments also provide a model, which may explain the diVerent repeat size ranges seen in patients and healthy controls for the diVerent polyglutamine diseases. (J Med Genet 1999;36:739-746)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.