This paper presents the results of a study on mercury distribution in urban wells from the town of Almadén (central Spain), a site that not only hosted the world's largest mercury mine but also a large roasting plant for cinnabar (HgS). The study includes data on Hg contents in the underground waters and also quality and physical-chemical parameters such as pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen, and water temperature from 27 wells and 2 monitoring drill holes. An important proportion of the wells (16 %) display Hg concentrations above the European Union Commission (EUC) and Spanish threshold (at 1 μg L −1 ) and only 10 % exceeded the US EPA recommendation (at 2 μg L −1 ). As expected, the highest concentrations of dissolved and total Hg are found in wells near to the mine. Hydrochemical water types depend on geogenic and anthropogenic factors, for example, higher mercury concentrations are linked to water-rock interactions (e.g., oxidation, leaching) in sectors where soluble mercury compounds have formed. Hg concentrations show a decrease from 2013 to 2015, a fact that may be due to the encapsulation of the main calcines waste dump or to dilution effects related to strong rainfall events previous to the sampling survey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.