The P-glycoprotein multidrug transporter functions as an ATP-driven efflux pump for a large number of structurally unrelated hydrophobic compounds. Substrates are believed to gain access to the transporter after partitioning into the membrane, rather than from the extracellular aqueous phase. The binding of drug substrates to P-glycoprotein may thus be modulated by the properties of the lipid bilayer. The interactions with P-glycoprotein of two drugs (vinblastine and daunorubicin) and a chemosensitizer (verapamil) were characterized by quenching of purified fluorescently labeled protein in the presence of various phospholipids. Biphasic quench curves were observed for vinblastine and verapamil, suggesting that more than one molecule of these compounds may bind to the transporter simultaneously. All three drugs bound to P-glycoprotein with substantially higher affinity in egg phosphatidylcholine (PC), compared to brain phosphatidylserine (PS) and egg phosphatidylethanolamine (PE). The nature of the lipid acyl chains also modulated binding, with affinity decreasing in the order egg PC > dimyristoyl-PC (DMPC) > dipalmitoyl-PC (DPPC). Following reconstitution of the transporter into DMPC, all three compounds bound to P-glycoprotein with 2-4-fold higher affinity in gel phase lipid relative to liquid-crystalline phase lipid. The P-glycoprotein ATPase stimulation/inhibition profiles for the drugs were also altered in different lipids, in a manner consistent with the observed changes in binding affinity. The ability of the drugs to partition into bilayers of phosphatidylcholines was determined. All of the drugs partitioned much better into egg PC relative to DMPC and DPPC. The binding affinity increased (i.e., the value of Kd decreased) as the drug-lipid partition coefficient increased, supporting the proposal that the effective concentration of the drug substrate in the membrane is important for interaction with the transporter. These results provide support for the vacuum cleaner model of P-glycoprotein action.
The P-glycoprotein multidrug transporter acts as an ATP-powered efflux pump for a large variety of hydrophobic drugs, natural products, and peptides. The protein is proposed to interact with its substrates within the hydrophobic interior of the membrane. There is indirect evidence to suggest that P-glycoprotein can also transport, or "flip", short chain fluorescent lipids between leaflets of the membrane. In this study, we use a fluorescence quenching technique to directly show that P-glycoprotein reconstituted into proteoliposomes translocates a wide variety of NBD lipids from the outer to the inner leaflet of the bilayer. Flippase activity depended on ATP hydrolysis at the outer surface of the proteoliposome, and was inhibited by vanadate. P-Glycoprotein exhibited a broad specificity for phospholipids, and translocated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. Lipid derivatives that were flipped included molecules with long, short, unsaturated, and saturated acyl chains and species with the NBD group covalently linked to either acyl chains or the headgroup. The extent of lipid translocation from the outer to the inner leaflet in a 20 min period at 37 degrees C was directly estimated, and fell in the range of 0.36-1.83 nmol/mg of protein. Phospholipid flipping was inhibited in a concentration-dependent, saturable fashion by various substrates and modulators, including vinblastine, verapamil, and cyclosporin A, and the efficiency of inhibition correlated well with the affinity of binding to Pgp. Taken together, these results suggest that P-glycoprotein carries out both lipid translocation and drug transport by the same path. The transporter may be a generic flippase for hydrophobic molecules with the correct steric attributes that are present within the membrane interior.
The P-glycoprotein multidrug transporter is a 170-kDa efflux pump which exports a diverse group of natural products, chemotherapeutic drugs, and hydrophobic peptides across the plasma membrane, driven by ATP hydrolysis. The transporter has been proposed to interact with its drug substrates within the membrane environment; however, much remains to be learned about the nature and number of the drug binding site(s). The two nucleotide binding domains are responsible for ATP binding and hydrolysis, which is coupled to drug movement across the membrane. In recent years, P-glycoprotein has been purified and functionally reconstituted in amounts large enough to allow biophysical studies. The use of spectroscopic techniques has led to insights into both its secondary and tertiary structure, and its interaction with nucleotides and drugs. In this review, we will summarise what has been learned by application to purified P-glycoprotein of fluorescence spectroscopy, circular dichroism spectroscopy and infra-red spectroscopy.
P-glycoprotein functions as an active efflux pump for lipophilic compounds and plays an important role in the resistance of human cancers to chemotherapeutic drugs. Drug transport is powered by ATP hydrolysis at two highly conserved nucleotide-binding domains, which are proposed to be located at the cytosolic face of the protein. The ATPase activity of P-glycoprotein depends on the presence of phospholipids, and various lipids affect both basal ATPase activity and its stimulation or inhibition by drug substrates. The modulating effects of the lipid-phase state and effects on the function of the nucleotidebinding domains of P-glycoprotein have been studied in reconstituted vesicles of the synthetic phospholipids 1-palmitoyl-2-myristoylphosphatidylcholine (PamMyrGroPCho) and dimyristoylphosphatidylcholine (Myr 2GroPCho). The kinetic parameters for P-glycoprotein ATPase activity were determined, and a fluorescence-quenching technique was used to measure the K d for ATP binding. The values of both the K m for ATP hydrolysis and K d for ATP binding were significantly different above and below the gel/liquidcrystalline phase transition temperature (t m) of PamMyrGroPCho and Myr2GroPCho, whereas they were similar at the same temperatures for P-glycoprotein in detergent solution. A discontinuity at 21Ϫ24°C was observed in the Arrhenius plots of P-glycoprotein ATPase activity in a membrane environment, but not in detergent solution. In addition, the activation energies for ATP hydrolysis in the gel and liquidcrystalline phases of the lipid bilayer were significantly different. P-glycoprotein in PamMyrGroPCho bilayers displayed an unusually low activation energy just below the melting transition. These results indicate that both ATP binding and ATP hydrolysis by P-glycoprotein are affected by the phase state of the host lipids in which it is reconstituted. Lipids may modulate the function of the nucleotide-binding domains of P-glycoprotein by interacting with the transmembrane regions of the protein, or the nucleotidebinding domains themselves may interact with the surface of the bilayer.
One of the major causes of multidrug resistance in human cancers is expression of the P-glycoprotein multidrug transporter, which acts as a drug efflux pump. P-Glycoprotein is a member of the ABC superfamily of membrane proteins, and is composed of 12 hydrophobic membrane-spanning segments and 2 cytoplasmic nucleotide binding domains. Membrane lipids are known to play an important role in the function of P-glycoprotein. In the present study, purified P-glycoprotein of high specific ATPase activity was reconstituted into defined bilayers of dimyristoylphosphatidylcholine (DMPC), and its effects on lipid thermodynamic properties were then investigated using differential scanning calorimetry. P-Glycoprotein had a large perturbing effect on DMPC bilayers, even at relatively high lipid:protein ratios. The gel to liquid-crystalline phase transition temperature, Tm, was lowered on inclusion of P-glycoprotein in the bilayer, and the cooperativity of the transition was markedly reduced. The phase transition enthalpy, DeltaH, declined in a linear fashion with increasing P-glycoprotein content for lipid:protein ratios between 63:1 and 16:1 (w/w). Evaluation of these data using two different analytical methods indicated that P-glycoprotein perturbed either 375 or 485 phospholipids, withdrawing them from the phase transition. The DeltaH value for those lipids undergoing melting was similar to that of pure DMPC, which implies that their thermodynamic properties are essentially unchanged in the presence of P-glycoprotein. At lipid:protein ratios below 16:1 (w/w), transition enthalpy increased with higher P-glycoprotein content, until the DeltaH value reached that of pure DMPC. However, the lipid remained highly perturbed, as indicated by a very broad phase transition peak. This behavior may arise from either aggregation/oligomerization of P-glycoprotein within the bilayer or changes in the interaction of the transporter with the membrane at high density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.