Editora Direitos para esta edição cedidos à Atena Editora pelos autores. Open access publication by Atena Editora Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterála de nenhuma forma ou utilizá-la para fins comerciais.Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.
In this article, we prove that initial value problem associated to the non-homogeneous KdV-Kuramoto-Sivashinsky (KdV-K-S) equation in periodic Sobolev spaces has a local solution in with and the solution has continuous dependence with respect to the initial data and the non-homogeneous part of the problem. We do this in an intuitive way using Fourier theory and introducing a inspired by the work of Iorio [2] and Ayala and Romero [8]. Also, we prove the uniqueness solution of the homogeneous and non-homogeneous KdV-K-S equation, using its dissipative property, inspired by the work of Iorio [2] and Ayala and Romero [9].
In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space ′ P . Furthermore, we prove that the solution depends continuously respect to the initial data in ′ P . Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in ′ P . Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.
Editora Direitos para esta edição cedidos à Atena Editora pelos autores. Open access publication by Atena Editora Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterála de nenhuma forma ou utilizá-la para fins comerciais.Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.