Simultaneous OH(6,2) and O(1S) nightglow measurements obtained at the Andes Lidar Observatory (ALO) (30.3°S, 70.7°W) from September 2011 to April 2018 have been analyzed to investigate an unusual intensity pattern, that is, O(1S) nightglow intensity enhancement concurrent with OH(6,2) nightglow intensity weakening. We identified 142 nights showing that behavior during the ∼6.5‐year period. The data set comprised of these 142 nights displayed a semiannual occurrence rate with maxima during the equinoxes. A semidiurnal tide fitting applied to the 30‐min bin size monthly averaged data shows that the largest amplitudes of the tide occur in April–May and August–September in both OH(6,2) and O(1S). SABER atomic oxygen (O) climatology near ALO shows higher O densities near the equinoxes, with maximum O densities in March and September at ∼96 km. Lidar temperature analysis suggests that the O(1S) enhancement concurrent with the OH(6,2) weakening is often accompanied by a temperature increase at 96 km and a decrease at 87 km. Simulations using airglow models have also been carried out to investigate the effect of a long‐period oscillation on the OH(6,2) and O(1S) airglow intensities. A sensitivity study has also been conducted to illustrate the effect of the characteristics of a long‐period wave on the airglow intensity patterns.
<p>Simultaneous observations of OH(6,2) and O(<sup>1</sup>S) nightglow at the Andes Lidar Observatory (ALO) from September 2011 to April 2018 have been analyzed to investigate an unusual intensity pattern showing an O(<sup>1</sup>S) nightglow intensity enhancement concurrent with an OH(6,2) nightglow intensity weakening. About 142 nights have been identified in the time period showing a remarkable biannual occurrence rate with maxima during the equinoxes. A semidiurnal (12-h) tide fitting applied to the 30-min bin size monthly averaged data shows that the largest amplitudes of the semidiurnal tide were observed for the months of April and August-October in the OH(6,2) data and April and September in the O(<sup>1</sup>S) data. It was also found that SABER&#8217;s atomic oxygen at the O(<sup>1</sup>S) peak height is 1.3-2.5 times higher during the nights that displayed the unusual intensity pattern. Simulations using the nonlinear, time-dependent, OH Chemistry Dynamics (OHCD) and Multiple Airglow Chemistry Dynamics (MACD) models have also been used to investigate the effect of a long-period wave on the OH(6,2) and O(<sup>1</sup>S) airglow intensities. The simulation results are in good agreement with the observations and replicate the unusual intensity pattern observed in the OH(6,2) and O(<sup>1</sup>S) airglow data.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.