In this study, a methodology for electrodeposition of nickel nanostructures on carbon felt was developed on the base of pulse plating technique. Different in size, shape, and distribution, Ni-island nanostructures were deposited varying the potential, current, pulse duration, and cycle reiteration. The biocompatibility and nontoxicity of the newly created materials toward Candida melibiosica yeast cells was proven. The prepared Ni-nanomodified carbon felts were investigated as anodes in a two-chamber mediatorless yeast−biofuel cell. Maximum power density values of 720 and 390 mW/m2 were achieved with the electrodes modified under galvanostatic and potentiostatic conditions, respectively, against 36 mW/m2 for the nonmodified ones. The better biofuel cell performance obtained with the Ni-modified electrodes is assigned to an improved electron transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.