Daclatasvir dihydrochloride (DAC) is a drug used to treat hepatitis C virus (HCV) infection. In this study, an ionophore-based nanosphere emulsion was made of tricresyl phosphate (TCP) as the oil phase that is dispersed in water using Pluronic F-127 as an emulsifying agent. The nanospheres, consisting of the oil phase TCP, were doped with sodium tetraphenyl borate (Na-TPB) as a cation-exchanger and dibenzo-18-Crown-6 (DB18C6) as an ionophore (chelating agent) for DAC. The nanosphere emulsion was employed as a titrant in the complexometric titration of DAC (the analyte), and the DAC-selective electrode (ISE) was used as an indicator electrode to detect the endpoint. In the sample solution, DAC2+ ions diffused into the emulsified nanospheres, replaced Na+ from the ion exchanger (Na-TPB), and bonded to the ionophore (DB18C6). The DAC-selective nanospheres were successfully utilized to determine DAC in various samples, including standard solutions, commercial tablets (Daclavirocyrl®), serum, and urine. The method exhibited a linear dynamic range of 81.18 µg/mL to 81.18 pg/mL (10−4 to 10−10 M), achieved high recovery values ranging from 99.4% to 106.5%, and displayed excellent selectivity over similar interfering species (sofosbuvir and ledipasvir). The proposed method offers a new approach to determine the drug species (neutral, anionic, and cationic) without the requirement of water-soluble ligands or pH control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.