The imbalanced datasets and their classification has pulled in as a hot research topic over the years. It is used in different fields, for example, security, finance, health, and many others. The imbalanced datasets are balanced by applying resampling and various solutions are designed to tackle such datasets that mainly focus on class distribution issues. The imbalanced data is rebalanced using these methods. This paper introduces a technique for balancing data through two stages: first, oversampling methods are utilized in the process of rebalancing such imbalanced dataset using the single-point crossover to generate the new data of minority classes, second, it searches for an optimal subset of the imbalanced and balanced datasets by Jellyfish Search (JS) which is an optimization method. Experiments are performed on 18 real imbalanced datasets, and results are compared with famous oversampling methods and the recently published ACOR (Ant Colony Optimization Resampling) method in terms of different appraisal measurements. Higher performance is recorded by the proposed method and comparability with well-known and recent techniques.
Emotional reactions are the best way to express human attitude and thermal imaging mainly used to utilize detection of temperature variations as in detecting spatial and temporal variation in the water status of grapevine. By merging the two facts this paper presents the Discrete Cosine Transform (DCT) with Local Entropy (LE) and Local Standard Deviation (LSD) features as an efficient filters for investigating human emotional state in thermal images. Two well known classifiers, K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) were combined with the earlier features and applied over a database with variant illumination, as well as occlusion by glasses and poses to generate a recognition model of facial expressions in thermal images. KNN based on DCT and LE gives the best accuracy compared with other classifier and features results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.