Conventional hard or dynamic wedge systems are commonly applied to reduce the dose inhomogeneity associated with whole breast irradiation. We evaluated the dosimetric benefits of the field-in-field (FIF) technique by comparing it with the electronic compensator (EC), Varian enhanced dynamic wedge (EW) and conventional hard wedge (HW) techniques. Data were obtained from 12 patients who had undergone breast-conserving surgery (six left-sided and six right-sided). For these patients, the average breast planning target volume (PTV) was 447.4 cm(3) (range, 211.6-711.8 cm(3)). For the experiments, a 6 MV photon beam from a Varian 21 EX was used, the HW and EW angles were applied from 15 to 45 degrees, while 40-50% isodose values were chosen to achieve the best dose distribution for electronic compensation. In applying the FIF technique, we used two or three subfields for each portal. To evaluate the performance for each planning technique, we analysed a dose-volume histogram (DVH) for the PTV and organs-at-risk (OARs). To evaluate the effects of these techniques on dose inhomogeneity, we defined the PTV Dose Improvement (PDI) index, which was derived from a PTV volume between 97-103% of the differential DVHs. In addition, we compared the average monitor units (MUs) for each technique. The average PDI index with FIF is 76.4%, while the PDI indices for other treatments were 65.8, 41.8 and 50.9% for EC, EW and HW, respectively. This study demonstrated an improved performance using the FIF technique compared with the conventional HW/EW system, as well as a new modality for EC. We demonstrated that FIF is a very useful technique for improving PTV conformity, while protecting the OARs from breast tangential irradiation.
The aim of the present study was to evaluate the effect of various specific dosimetric leaf gaps on the multileaf collimator (MLC)–based small‐beam dose distribution. The dosimetric static leaf gap was determined by comparing the profiles of small MLC‐based beams with those of small collimated fields (square fields of 1, 2, 3, and 4cm). The results showed that an approximately 2‐mm gap was optimal with the Millennium 120‐leaf MLC (Varian Medical Systems, Palo Alto, CA) and a Varian 21EX 6‐MV photon beam. We also investigated how much the leaf gap affects the planning results and the actual dose distribution. A doughnut‐shaped planning target volume (PTV, 6.1 cm3) and inner organ at risk (OAR, 0.3 cm3) were delineated for delicate intensity‐modulated radiosurgery test planning. The applied leaf gaps were 0, 1, and 2 mm. The measured dose distributions were compared with the dose distribution in the treatment planning system. The maximum dose differences at inside PTV, outside PTV, and inner OAR were, respectively, 22.3%, 20.2%, and 35.2% for the 0‐mm leaf gap; 17.8%, 22.8%, and 30.8% for the 1‐mm leaf gap; and 5.5%, 8.5%, and 6.3% for the 2‐mm leaf gap. In a human head phantom (model 605: CIRS, Norfolk, VA) study, large dose differences of 1.3% – 12.7% were noted for the measurements made using the MLC files generated by the three different leaf gaps. The planned results were similar, and measurements showed a large dose difference associated with the various leaf gaps. These results strongly suggest that plans generated by a commercial inverse planning system commissioned using general collimated field data will probably demonstrate discrepancies between the planned treatments and the measured results.PACS number: 87.53.Dq
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.