Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.
Eukaryotic chromosomal DNA replication requires cyclin-dependent kinase (CDK) activity. CDK phosphorylates two yeast replication proteins, Sld3 and Sld2, both of which bind to Dpb11 when phosphorylated. These phosphorylation-dependent interactions are essential and are the minimal requirements for CDK-dependent activation of DNA replication. However, how these interactions activate DNA replication has not been elucidated. Here, we show that CDK promotes the formation of a newly identified fragile complex, the preloading complex (pre-LC) containing DNA polymerase e (Pol e), GINS, Sld2, and Dpb11. Formation of the pre-LC requires phosphorylation of Sld2 by CDK, but is independent of DNA replication, protein association with replication origins, and Dbf4-dependent Cdc7 kinase, which is also essential for the activation of DNA replication. We also demonstrate that Pol e, GINS, Dpb11, and CDK-phosphorylated Sld2 form a complex in vitro. The genetic interactions between Pol e, GINS, Sld2, and Dpb11 suggest further that they form an essential complex in cells. We propose that CDK regulates the initiation of DNA replication in budding yeast through formation of the pre-LC.[Keywords: DNA replication; cell cycle; CDK; GINS; Pol e; yeast] Supplemental material is available at http://www.genesdev.org.
Phosphorylation often regulates protein-protein interactions to control biological reactions. The Sld2 and Dpb11 proteins of budding yeast form a phosphorylation-dependent complex that is essential for chromosomal DNA replication. The Sld2 protein has a cluster of 11 cyclindependent kinase (CDK) phosphorylation motifs (Ser/ Thr-Pro), six of which match the canonical sequences Ser/Thr-Pro-X-Lys/Arg, Lys/Arg-Ser/Thr-Pro and Ser/ Thr-Pro-Lys/Arg. Simultaneous alanine substitution for serine or threonine in all the canonical CDK-phosphorylation motifs severely reduces complex formation between Sld2 and Dpb11, and inhibits DNA replication. Here we show that phosphorylation of these canonical motifs does not play a direct role in complex formation, but rather regulates phosphorylation of another residue, Thr84. This constitutes a non-canonical CDK-phosphorylation motif within a 28-amino-acid sequence that is responsible, after phosphorylation, for binding of Sld2-Dpb11. We further suggest that CDK-catalysed phosphorylation of sites other than Thr84 renders Thr84 accessible to CDK. Finally, we argue that this novel mechanism sets a threshold of CDK activity for formation of the essential Sld2 to Dpb11 complex and therefore prevents premature DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.