Growing cells coordinate protein translation with metabolic rates. Central to this coordination is ribosome production. Ribosomes drive cell growth, but translation of ribosomal proteins competes with production of non-ribosomal proteins. Theory shows that cell growth is maximized when all expressed ribosomes are constantly translating. To examine whether budding yeast function at this limit of full ribosomal usage, we profiled the proteomes of cells growing in different environments. We find that cells produce excess ribosomal proteins, amounting to a constant ≈8% of the proteome. Accordingly, ≈25% of ribosomal proteins expressed in rapidly growing cells does not contribute to translation. Further, this fraction increases as growth rate decreases and these excess ribosomal proteins are employed when translation demands unexpectedly increase. We suggest that steadily growing cells prepare for conditions that demand increased translation by producing excess ribosomes, at the expense of lower steady-state growth rate.
Growing cells coordinate protein translation with metabolic rates. Central to this coordination is ribosome production. Ribosomes drive cell growth, but translation of ribosomal proteins competes with production of other proteins. Theory shows that cell growth is maximized when all expressed ribosomes are constantly translating. To examine whether budding yeast function at this limit of full ribosomal usage, we profiled the proteomes of cells growing in different environments. We find that cells produce an excess of ribosomal proteins, amounting to a constant ≈8% of the proteome. Accordingly, ≈25% of ribosomal proteins expressed in rapidly growing cells do not contribute to translation. This fraction increases as growth rate decreases. These excess ribosomal proteins are employed during nutrient upshift or when forcing unneeded expression. We suggest that steadily growing cells prepare for conditions that demand increased translation by producing excess ribosomes, at the expense of lower steady-state growth rate.
Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that downregulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after 2 hr with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation.
We have carried out a combination of in-lab-evolution (ILE) and congenic crosses to identify the gene sets that contribute to the ability of yeast cells to survive under alkali stress.Each selected line acquired a different set of mutations, all resulting in the same phenotype. We identified a total of 15 genes in ILE and 17 candidates in the congenic approach, and studied their individual contribution to the phenotype.The total additive effect of the QTLs was much larger than the difference between the ancestor and the evolved strains, suggesting epistatic interactions between the QTLs.None of the genes identified encode structural components of the pH machinery. Instead, most encode regulatory functions, such as ubiquitin ligases, chromatin remodelers, GPI anchoring and copper/iron sensing transcription factors.
Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.