Grasses take up silicic acid from soil and deposit it in their leaves as solid silica. This mineral, comprising 1-10% of the grass dry weight, improves plants' tolerance to various stresses. The mechanisms promoting stress tolerance are mostly unknown, and even the mineralization process is poorly understood. To study leaf mineralization in sorghum (Sorghum bicolor), we followed silica deposition in epidermal silica cells by in situ charring and air-scanning electron microscopy. Our findings were correlated to the viability of silica cells tested by fluorescein diacetate staining. We compared our results to a sorghum mutant defective in root uptake of silicic acid. We showed that the leaf silicification in these plants is intact by detecting normal mineralization in leaves exposed to silicic acid. Silica cells were viable while condensing silicic acid into silica. The controlled mineral deposition was independent of water evapotranspiration. Fluorescence recovery after photobleaching suggested that the forming mineral conformed to the cellulosic cell wall, leaving the cytoplasm well connected to neighboring cells. As the silicified wall thickened, the functional cytoplasm shrunk into a very small space. These results imply that leaf silica deposition is an active, physiologically regulated process as opposed to a simple precipitation.
A critical challenge arising during a surgical procedure for tumor removal is the determination of tumor margins. Gold nanorods (GNRs) conjugated to epidermal growth factor receptors (EGFR) (GNRs-EGFR) have long been used in the detection of cancerous cells as the expression of EGFR dramatically increases once the tissue becomes cancerous. Optical techniques for the identification of these GNRs-EGFR in tumor are intensively developed based on the unique scattering and absorption properties of the GNRs. In this study, we investigate the distribution of the GNRs in tissue sections presenting squamous cell carcinoma (SCC) to evaluate the SCC margins. Air scanning electron microscopy (airSEM), a novel, high resolution microscopy is used, enabling to localize and actually visualize nanoparticles on the tissue. The airSEM pictures presented a gradient of GNRs from the tumor to normal epithelium, spread in an area of 1 mm, suggesting tumor margins of 1 mm. Diffusion reflection (DR) measurements, performed in a resolution of 1 mm, of human oral SCC have shown a clear difference between the DR profiles of the healthy epithelium and the tumor itself.
A complete fingerprint of a tissue sample requires a detailed description of its cellular and extracellular components while minimizing artifacts. We introduce the application of a novel scanning electron microscope (airSEMTM) in conjunction with light microscopy for functional analysis of tissue preparations at nanometric resolution (<10 nm) and under ambient conditions. Our metal-staining protocols enable easy and detailed visualization of tissues and their extracellular scaffolds. A multimodality imaging setup, featuring airSEMTM and a light microscope on the same platform, provides a convenient and easy-to-use system for obtaining structural and functional correlative data. The airSEMTM imaging station complements other existing imaging solutions and shows great potential for studies of complex biological systems.
Thin films with tunable porosity are of high interest in applications such as gas sensing and antireflective coatings. We report a facile and scalable method to fabricate ZnO electrodes with tuneable porosity. By adjusting the substrate temperature and ratio of precursor gasses during lowpressure chemical vapor deposition we can accurately tune the porosity of ZnO films, from 0 up to 24%. The porosity change of the films from dense layer to separated nanopillars results in an effective refractive index reduction from 1.9 to 1.65 at 550 nm, as determined by optical and x-ray spectroscopy. The low-refractive-index ZnO films are incorporated into amorphous silicon solar cells demonstrating reflection losses reduction down to 4% in the visible wavelengths range.
Bone remodeling relies on the coordinated functioning of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells. The effects of specific chemical and physical bone features on the osteoclast adhesive apparatus, the sealing zone ring, and their relation to resorption functionality are still not well-understood. We designed and implemented a correlative imaging method that enables monitoring of the same area of bone surface by time-lapse light microscopy, electron microscopy, and atomic force microscopy before, during, and after exposure to osteoclasts. We show that sealing zone rings preferentially develop around surface protrusions, with lateral dimensions of several micrometers, and ∼1 μm height. Direct overlay of sealing zone rings onto resorption pits on the bone surface shows that the rings adapt to pit morphology. The correlative procedure presented here is noninvasive and performed under ambient conditions, without the need for sample labeling. It can potentially be applied to study various aspects of cell-matrix interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.