The scaling properties of the maximal height of a growing self-affine surface with a lateral extent L are considered. In the late-time regime its value measured relative to the evolving average height scales like the roughness: h*(L) approximately L alpha. For large values its distribution obeys logP(h*(L)) approximately (-)A(h*(L)/L(alpha))(a). In the early-time regime where the roughness grows as t(beta), we find h*(L) approximately t(beta)[lnL-(beta/alpha)lnt+C](1/b), where either b = a or b is the corresponding exponent of the velocity distribution. These properties are derived from scaling and extreme-value arguments. They are corroborated by numerical simulations and supported by exact results for surfaces in 1D with the asymptotic behavior of a Brownian path.
We apply optimization algorithms to the problem of finding ground states for crystalline surfaces and flux lines arrays in presence of disorder. The algorithms provide ground states in polynomial time, which provides for a more precise study of the interface widths than from Monte Carlo simulations at finite temperature. Using d = 2 systems up to size 420 2 , with a minimum of 2 × 10 3 realizations at each size, we find very strong evidence for a ln 2 (L)super-rough state at low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.