Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-QTo determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.
It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH-sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, were required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC lead to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that that pH changes are a second messenger for transcriptional reprogramming during carbon starvation, and that the SNF5 QLC acts as a pH-sensor.
It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH-sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in S. cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. We found that a glutamine-rich low complexity sequence (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, were required for efficient transcriptional reprogramming during carbon starvation. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to a model promoter in vitro. Simulations showed that protonation of histidines within the SNF5 QLC lead to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that that pH changes are a second messenger for transcriptional reprogramming during carbon starvation, and that the SNF5 QLC acts as a pH-sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.