Fractional diffusion equations include a consistent and efficient explanation of transport phenomena that manifest abnormal diffusion, that cannot be often represented by second‐order diffusion equations. In this article, a two‐dimensional space fractional diffusion equation (SFDE‐2D) with nonhomogeneous and homogeneous boundary conditions is considered in Caputo derivative sense. An instant and nevertheless accurate scheme is obtained by the finite‐difference discretization to get the semidiscrete in temporal derivative with convergence order Ofalse(δτ2false). Moreover, space fractional derivative can be approximated based on the Chebyshev polynomials of second kind which are powerful methods for basing the operational matrix. The convergence and stability of the proposed scheme are discussed theoretically in detail. Finally, two numerical problems with an exact solution are given that numerical results show the effectiveness of the new techniques. These schemes can be simply extended to three spatial dimensions, which will be the subject of our subsequent research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.