BACKGROUND: Significant amount of bisphenol A has been released from the manufacturing process of plastics, epoxy resins, dental material and flame retardants. Bisphenol A has been detected at trace levels in wastewater, surface water, landfill leachate and drinking water. However, the residual survey of bisphenol A has not been performed in agricultural reservoir beside agricultural environment cultivating crops. This study was conducted to monitor the residual bisphenol A in national agricultural reservoirs and understand a level of contamination of bisphenol A in the agricultural environment in Korea. METHODS AND RESULTS:The water and water sediment were collected at agricultural reservoirs in Chungnam, Chungbuk, Kyunggi, Jeonnam, Jeonbuk, Kyungnam and Kyungbuk province. Bisphenol A was analyzed by the LC-MS/MS with triple quad 4500. The recovery of water and water sediment in the agricultural reservoirs showed the level of 95.7~97.2% and 91.5
BACKGROUND: Bisphenol A (BPA) is a chemical widely used in polycarbonate plastics, epoxy resins. BPA is an endocrine disruptor. Residue of BPA in agricultural environments is a major concern. The objective of this study was to understand the characteristics of the uptake and distribution of BPA and its metabolites introduced into the agricultural environment to crops, and to use it as basic data for further research on reduction of BPA in agricultural products. METHODS AND RESULTS: This study established the analysis method of BPA and its metabolites in soil and crops, and estimated the intake of BPA and its metabolites from lettuce (Lactuca sativa) grown in sandy loam and loam soil, which are representative soils in Korea. The two major metabolites of BPA were 4-hydroxyacetophenone (4-HAP) and 4-hydroxybenzoic acid (4-HBA). BPA, 4-HAP and 4-HBA have been analyzed by using liquid chromatography tandem mass spectrometry (LC-MS/MS). These substances were detected in sandy loam and loam soil, indicating that certain portions of BPA were converted to 4-HAP and 4-HBA in the soil; however, it was observed that only 4-HBA migrated to lettuce through the roots into crops. CONCLUSION: The uptake residues showed the BPA and 4-HAP were not detected in lettuces grown on sandy loam (SL) and loam (L) soil treatments that were applied with of 10 ng/g, 50 ng/kg and 500 ng/g of BPA. However, the 4-HBA was detected at the level of 7 ng/g and 11 ng/g in the lettuce grown in sandy loam and loam soil that were treated with the 500 ng/g of BPA, respectively, while the 8 ng/g of 4-HBA was measured in the lettuce cultivated in the loam that was treated with 100 ng/g of BPA. This result presents that the BPA persisting in the soil of the pot was absorbed through the lettuce roots and then distributed in the lettuce leaves at the converted form of 4-HBA, what is the oxidative metabolite of BPA.
Octachlorostyrene(OCS) has been persisted in environment because it has not been decomposed easily. And, it has been known as highly toxic compounds to the environment and human as well as accumulated as high concentrations in a biota through a food chain. Therefore, OCS was monitored for water, soil and fish sampled from the areas where were able to be contaminated with OCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.