The bihemispheric anodal tDCS with conventional dysphagia therapy had additional helpful effects on the improvement in swallowing function in chronic stroke patients.
GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.
Alkali halides such as KBr, KI, CsBr, and CsI were added to Dy3+-doped Ge–Ga–S glasses, and their effects on the 1.31-μm emission property were investigated. The intensities of the 1.31-μm emission (6F11/2 · 6H9/2 → 6H15/2) increased at the expense of the 1.75-μm emission intensity (6H11/2 → 6H15/2) with the alkali halide addition. The lifetimes of the 1.31-μm emission level also increased as much as 35 times from 38 μs for Ge–Ga–S glass to 1320 μs for the glass containing 10 mol% CsBr. These enhancements occurred only when the ratio of MX (M = K, Cs; X = Br, I)/Ga was equal to or larger than unity. Raman spectra of Ge–Ga–S–CsBr glasses indicated the formation of [GaS3/2Br]− complexes, which provide the preferred sites for Dy3+. Due to this new local environment of Dy3+, the multiphonon relaxation rates from the Dy3+:6F11/2 · 6H9/2 level decreased by approximately four orders of magnitude. The enhancement in the 1.31-μm emission properties with alkali halide addition supports the potentials of these glasses as hosts for the Dy3+-doped fiber-optic amplifiers.
Some patients admitted to the intensive care unit (ICU) because of an acute illness, complicated surgery, or multiple traumas develop muscle weakness affecting the limbs and respiratory muscles during acute care in the ICU. This condition is referred to as ICU-acquired weakness (ICUAW), and can be evoked by critical illness polyneuropathy (CIP), critical illness myopathy (CIM), or critical illness polyneuromyopathy (CIPNM). ICUAW is diagnosed using the Medical Research Council (MRC) sum score based on bedside manual muscle testing in cooperative patients. The MRC sum score is the sum of the strengths of the 12 regions on both sides of the upper and lower limbs. ICUAW is diagnosed when the MRC score is less than 48 points. However, some patients require electrodiagnostic studies, such as a nerve conduction study, electromyography, and direct muscle stimulation, to differentiate between CIP and CIM. Pulmonary rehabilitation in the ICU can be divided into modalities intended to remove retained airway secretions and exercise therapies intended to improve respiratory function. Physical rehabilitation, including early mobilization, positioning, and limb exercises, attenuates the weakness that occurs during critical care. To perform mobilization in mechanically ventilated patients, pretreatment by removing secretions is necessary. It is also important to increase the strength of respiratory muscles and to perform lung recruitment to improve mobilization in patients who are weaned from the ventilator. For these reasons, pulmonary rehabilitation is important in addition to physical therapy. Early recognition of CIP, CIM, and CIPNM and early rehabilitation in the ICU might improve patients' functional recovery and outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.