We investigated the role of nitric oxide (NO) in the regulation of ascorbate-glutathione (AsA-GSH) cycle and water physiological characteristics of Arabidopsis thaliana by sodium hydrosulfide (NaHS). NaHS markedly increased the contents of H2S, NO, chlorophyll (Chl), and carotenoids, the activity of AsA-GSH cycle, ascorbate/dehydroascorbate ratio, net photosynthetic rate, Chl fluorescence parameters, transpiration rate, stomatal conductance, and relative water content in leaves and the biomass of wild-type Arabidopsis. However, NaHS markedly decreased malondialdehyde content and electrolytic leakage. Except H2S, above NaHS-induced promotions were suppressed by nitrate reductase (NR) inhibitor sodium azide (NaN3). Application of sodium nitroprusside (SNP) to (NaN3+NaHS)-treated wild type Arabidopsis (NaN3+SNP+NaHS) reversed above effects of NaN3+NaHS. However, NaN3+NaHS and NaN3+SNP+NaHS had no significant effects on H2S content. Meanwhile, we proved above results by using NO-associated NR gene mutant nia1,nia2. Above results suggested that NO participated in the regulation of AsA-GSH cycle and water physiological characteristics of Arabidopsis by NaHS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.