A major challenge of lithium-oxygen batteries is to develop a stable electrolyte not only to suppress solvent evaporation and lithium dendrite growth, but also to resist the attack by superoxide anion radical formed at the positive electrode. The present study demonstrates the enhancement of cycling stability by addressing the above challenges through the use of three-dimensional semi-interpenetrating polymer network (semi-IPN) composite gel polymer electrolyte when fabricating the lithium-oxygen cell. The semi-IPN composite gel electrolyte synthesized from poly(methyl methacrylate), divinylbenzene, and vinyl-functionalized silica effectively encapsulated electrolyte solution and exhibited stable interfacial characteristics toward lithium electrodes. Matrix polymers in the semi-IPN composite gel electrolyte also retained high stability without any decomposition by superoxide anion radicals during cycling. The lithium-oxygen cell employing semi-IPN composite gel polymer electrolyte was shown to cycle with good capacity retention at 0.25 mAh cm. The semi-IPN composite gel electrolyte is one of the promising electrolytes for the stable lithium-oxygen battery with high energy density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.