Rice (Oryza sativa) is a staple food for more than half of the world’s population, and its production is critical for global food security. Moreover, rice yield decreases when exposed to abiotic stresses, such as salinity, which is one of the most detrimental factors for rice production. According to recent trends, as global temperatures continue to rise due to climate change, more rice fields may become saltier. Dongxiang wild rice (Oryza rufipogon Griff., DXWR) is a progenitor of cultivated rice and has a high tolerance to salt stress, making it useful for studying the regulatory mechanisms of salt stress tolerance. However, the regulatory mechanism of miRNA-mediated salt stress response in DXWR remains unclear. In this study, miRNA sequencing was performed to identify miRNAs and their putative target genes in response to salt stress in order to better understand the roles of miRNAs in DXWR salt stress tolerance. A total of 874 known and 476 novel miRNAs were identified, and the expression levels of 164 miRNAs were found to be significantly altered under salt stress. The stem-loop quantitative real-time PCR (qRT-PCR) expression levels of randomly selected miRNAs were largely consistent with the miRNA sequencing results, suggesting that the sequencing results were reliable. The gene ontology (GO) analysis indicated that the predicted target genes of salt-responsive miRNAs were involved in diverse biological pathways of stress tolerance. This study contributes to our understanding of DXWR salt tolerance mechanisms regulated by miRNAs and may ultimately improve salt tolerance in cultivated rice breeding using genetic methods in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.