Peptidylarginine deiminases (PADs) are posttranslational modification enzymes that convert protein arginine to citrulline residues in a calcium ion-dependent manner. Previously, we reported the abnormal accumulation of citrullinated proteins and the increase in the amount of PAD2 in hippocampi from Alzheimer's disease (AD) patients. Moreover, glial fibrillary acidic protein (GFAP), an astrocyte-specific marker protein, and vimentin were identified as citrullinated proteins by using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. To clarify the substrate specificity of PADs against GFAP, we prepared recombinant human (rh)PAD1, rhPAD2, rhPAD3, rhPAD4, and rhGFAP. After incubation of rhGFAP with rhPAD1, rhPAD2, rhPAD3, and rhPAD4, citrullinated (cit-)rhGFAP was detected by Western blotting. The citrullination of rhGFAP by rhPAD2 was unique, specific, and time dependent; additionally, rhPAD1 slightly citrullinated rhGFAP. We then generated eight anti-cit-rhGFAP monoclonal antibodies, CTGF-125, -128, -129, -1212, -1213, -1221, -122R, and -1224R, which reacted specifically with cit-rhGFAP. Two of those eight monoclonal antibodies, CTGF-122R and -1224R, reacted with both cit-rhGFAP and rhGFAP in Western blots. By using the CTGF-1221 antibody and a tandem mass spectrometer, we identified the two independent citrullination sites (R270Cit and R416Cit) of cit-rhGFAP. Immunohistochemical analysis with CTGF-1221 antibody revealed cit-GFAP staining in the hippocampus of AD brain, and the cit-GFAP-positive cells appeared to be astrocyte-like cells. These collective results strongly suggest that PAD2 is responsible for the citrullination of GFAP in the progression of AD and that the monoclonal antibody CTGF-1221, reacting with cit-GFAP at R270Cit and R416Cit, is useful for immunohistochemical investigation of AD brains.