Biomass occupies a significant proportion of municipal solid waste. For the high-value processing of waste biomass, a hydrothermal-carbonization method was chosen because of the advantages of effective and mild conditions. Four typical types of waste biomass (banana peel, mangosteen peel, orange peel, and pomelo peel) were used in this work to prepare high-value carbon aerogels (CA) via hydrothermal-carbonization treatment for cracking ethanol. Four kinds of CA all had good performances in the ethanol cracking reaction and improved the yield of H2 from 21 wt% to about 40 wt%. The banana peel-based carbon aerogel (BPCA) showed the best performance in the reaction; it cracked ethanol and obtained 41.86 wt% of H2. The mechanism of ethanol cracking by CA was revealed: On one hand, the self-cracking of ethanol was improved due to the extension of residence time, which benefited from the abundant pores in CA. On the other hand, the heterogeneous reaction occurred on the surface of CA where the inorganic components, mainly Ca, Mg, and K, can promote the bond-breaking and reorganization in ethanol. The CO2 in byproducts was also fixed by Ca and Mg, improving the positive cracking reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.