Parasecretion of the hematopoietic cytokines is considered as one of the mechanisms account for bone marrow hematopoiesis disorder. In this study, the level of IL-6 secreted by bone marrow stromal cells from a mouse model of aplastic anemia was analyzed. The aplastic anemia mouse model was established with cyclophosphamide in combination with chloramphenicol and 60Coγ radiation. The impairment of bone marrow hematopoiesis induced by irradiation and chemotherapeutic drugs was subsequently characterized by peripheral blood cell count, pathomorphological changes, and apoptosis rate. Furthermore, the in vitro proliferation of bone marrow stromal cells (BMSC) and the IL-6 secretion levels of BMSC were analyzed. In our model of aplastic anemia, the number of peripheral blood cells and bone marrow cells (BMC) were notably decreased, and the apoptosis rate of BMC increased. Furthermore, the proliferation of BMSC was obviously impeded while the IL-6 secretion levels of BMSC significantly increased. The findings of our study suggested that the IL-6 secretion level may be enhanced to some extent by the induction of aplastic anemia caused by irradiation and chemotherapeutic drugs and that the abnormal level of IL-6 might probably interfere with the stability of the bone marrow hematopoietic microenvironment.
Background: Psoriasis is a common inflammatory skin disease. Abnormal proliferation of keratinocytes is one of the psoriatic histopathological features. Indirubin has an essential effect on the proliferation and activation of keratinocytes; however, in psoriasis, the specific mechanism of action of indirubin on keratinocytes is unclear. In the present study, we revealed the effects of indirubin on DNA methyltransferase 1 (DNMT1), wnt inhibitory factor 1 (wif-1), and wnt/β-catenin signal pathway, in the meantime, we explored the effects of indirubin on proliferation, cell cycle and the apoptosis of HaCaT cells. Methods: The expression of DNMT1, wif-1, Frizzled2, Frizzled5, and β-catenin in HaCaT cells treated with different concentrations of indirubin were detected by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of DNMT1 and wif-1 were observed after treated with different concentrations of indirubin by enzyme-linked immunosorbent assay (ELISA). The wif-1 promoter methylation status was detected by DNA methylation-specific PCR (MSP). The transcriptional activities of wif-1 and β-catenin were discovered by a luciferase reporter gene system. Cell viability was determined by Cell Counting Kit-8 (CCK8) method. The cell cycle was detected by flow cytometry. The apoptotic cells were surveyed by the apoptosis kit. The expression of Inolucrin, Loricrin, Filaggrin, Keratin 17, and transcriptional activation of transglutaminase 1(TGase1) were detected by Western blotting. Results: Indirubin inhibited the expression of DNMT1 and the methylation of the wif-1 promoter. In the wnt signal pathway, indirubin restored the protein expression of wif-1 and inhibited expression of Frizzled2, Frizzled5, and βcatenin. Besides, indirubin inhibited the proliferation of HaCaT cells, induced apoptosis, and arrest cell cycle. We also reported that indirubin could down-regulate the expression of Involucrin, TGase 1, and keratin 17, but the expression of Filaggrin and Loricrin had no significant effect. Conclusion: Our research showed that indirubin promoted the demethylation of wif-1 and suppressed the wnt/βcatenin signal pathway, thereby exerted an anti-proliferative effect. This study reveals the anti-proliferation mechanism of indirubin, which may provide an effective option for the treatment of proliferative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.