Plasmodium yoelii is an excellent model for studying malaria pathogenesis that is often intractable to investigate using human parasites; however, genetic studies of the parasite have been hindered by lack of genome-wide linkage resources. Here, we performed 14 genetic crosses between three pairs of P. yoelii clones/subspecies, isolated 75 independent recombinant progeny from the crosses, and constructed a high-resolution linkage map for this parasite. Microsatellite genotypes from the progeny formed 14 linkage groups belonging to the 14 parasite chromosomes, allowing assignment of sequence contigs to chromosomes. Growth-related virulent phenotypes from 25 progeny of one of the crosses were significantly associated with a major locus on chromosome 13 and with two secondary loci on chromosomes 7 and 10. The chromosome 10 and 13 loci are both linked to day 5 parasitemia, and their effects on parasite growth rate are independent but additive. The locus on chromosome 7 is associated with day 10 parasitemia. The chromosome 13 locus spans ∼220 kb of DNA containing 51 predicted genes, including the P. yoelii erythrocyte binding ligand, in which a C741Y substitution in the R6 domain is implicated in the change of growth rate. Similarly, the chromosome 10 locus spans ∼234 kb with 71 candidate genes, containing a member of the 235-kDa rhoptry proteins (Py235) that can bind to the erythrocyte surface membrane. Atypical virulent phenotypes among the progeny were also observed. This study provides critical tools and information for genetic investigations of virulence and biology of P. yoelii.genetic mapping | inheritance | crossover | rodent
Fungal dissemination into the bloodstream is a critical step leading to invasive fungal infections. Here, using intravital imaging, we show that Kupffer cells (KCs) in the liver have a prominent function in the capture of circulating Cryptococcus neoformans and Candida albicans, thereby reducing fungal dissemination to target organs. Complement C3 but not C5, and complement receptor CRIg but not CR3, are involved in capture of C. neoformans. Internalization of C. neoformans by KCs is subsequently mediated by multiple receptors, including CR3, CRIg, and scavenger receptors, which work synergistically along with C5aR signaling. Following phagocytosis, the growth of C. neoformans is inhibited by KCs in an IFN-γ independent manner. Thus, the liver filters disseminating fungi from circulation via KCs, providing a mechanistic explanation for the enhanced risk of cryptococcosis among individuals with liver diseases, and suggesting a therapeutic strategy to prevent fungal dissemination through enhancing KC functions.
Although CRIg was originally identified as a macrophage receptor for binding complement C3b/iC3b in vitro, recent studies reveal that CRIg functions as a pattern recognition receptor in vivo for Kupffer cells (KCs) to directly bind bacterial pathogens in a complement-independent manner. This raises the critical question of whether CRIg captures circulating pathogens through interactions with complement in vivo under flow conditions. Furthermore, the role of CRIg during parasitic infection is unknown. Taking advantage of intravital microscopy and using African trypanosomes as a model, we studied the role of CRIg in intravascular clearance of bloodborne parasites. Complement C3 is required for intravascular clearance of African trypanosomes by KCs, preventing the early mortality of infected mice. Moreover, antibodies are essential for complement-mediated capture of circulating parasites by KCs. Interestingly, reduced antibody production was observed in the absence of complement C3 during infection. We further demonstrate that CRIg but not CR3 is critically involved in KC-mediated capture of circulating parasites, accounting for parasitemia control and host survival. Of note, CRIg cannot directly catch circulating parasites and antibody-induced complement activation is indispensable for CRIg-mediated parasite capture. Thus, we provide evidence that CRIg, by interacting with complement in vivo, plays an essential role in intravascular clearance of bloodborne parasites. Targeting CRIg may be considered as a therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.