In situ XRD resolves the structural evolution of the Na–Cu/Ni/Mn–O system during the Na intercalation/deintercalation processes. The introduction of Cu2+ into the transition metal lattice is an strategy to prevent P2–O2 phase transitions.
Hollow carbon nanostructures have inspired numerous interests in areas such as energy conversion/storage, biomedicine, catalysis, and adsorption. Unfortunately, their synthesis mainly relies on template-based routes, which include tedious operating procedures and showed inadequate capability to build complex architectures. Here, by looking into the inner structure of single polymeric nanospheres, we identified the complicated compositional chemistry underneath their uniform shape, and confirmed that nanoparticles themselves stand for an effective and versatile synthetic platform for functional hollow carbon architectures. Using the formation of 3-aminophenol/formaldehyde resin as an example, we were able to tune its growth kinetics by controlling the molecular/environmental variables, forming resin nanospheres with designated styles of inner constitutional inhomogeneity. We confirmed that this intraparticle difference could be well exploited to create a large variety of hollow carbon architectures with desirable structural characters for their applications; for example, high-capacity anode for potassium-ion battery has been demonstrated with the multishelled hollow carbon nanospheres.
K-ion batteries (KIBs) are now drawing increasing research interest as an inexpensive alternative to Li-ion batteries (LIBs). However, due to the large size of K, stable electrode materials capable of sustaining the repeated K intercalation/deintercalation cycles are extremely deficient especially if a satisfactory reversible capacity is expected. Herein, we demonstrated that the structural engineering of carbon into a hollow interconnected architecture, a shape similar to the neuron-cell network, promised high conceptual and technological potential for a high-performance KIB anode. Using melamine-formaldehyde resin as the starting material, we identify an interesting glass blowing effect of this polymeric precursor during its carbonization, which features a skeleton-softening process followed by its spontaneous hollowing. When used as a KIB anode, the carbon scaffold with interconnected hollow channels can ensure a resilient structure for a stable potassiation/depotassiation process and deliver an extraordinary capacity (340 mAh g at 0.1 C) together with a superior cycling stability (no obvious fading over 150 cycles at 0.5 C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.