A new member of the aquaporin (AQP) family has been identified from rat testis. This gene, referred as aquaporin 7 (AQP7), encodes a 269-amino acid protein that contained the conserved NPA motifs of MIP family proteins. AQP7 has the amino acid sequence homology with other aquaporins (ϳ30%), and it is highest with AQP3 (48%), suggesting that both AQP3 and AQP7 belong to a subfamily in the MIP family. Injection of AQP7-cRNA into Xenopus oocytes expressed a 26-kDa protein detected by immunoblotting. The expression of AQP7 in oocytes stimulated the osmotic water permeability by 10-fold which was not inhibited by 0.3 mM mercury chloride. The Arrhenius activation energy for the stimulated water permeability was low (2.1 kcal/mol). AQP7 also facilitated glycerol and urea transport by 5-and 9-fold, respectively. The activation energy for glycerol was also low (5.3 kcal/mol after the correction of the endogenous glycerol permeability of oocytes). Northern blot analysis revealed a 1.5-kilobase pair transcript expressed abundantly in testis. In situ hybridization of testis revealed the expression of AQP7 at late spermatids in seminiferous tubules. The immunohistochemistry of testis localized the AQP7 expression at late spermatids and at maturing sperms. AQP7 may play an important role in sperm function.Recent studies have identified several water channels (aquaporins) that belong to the MIP family (reviewed in Ref.
ObjectivesFollicular helper T (Tfh) cells exert an important role in autoimmune diseases. Whether it might be involved in type 1 diabetes (T1D) is unknown. Our aim was to investigate the role of Tfh cells in patients with T1D and the effect of anti-CD20 monoclonal antibody (rituximab) on Tfh cells from T1D patients.Patients and MethodsFifty-four patients with T1D and 37 healthy controls were enrolled in the current study. 20 of those patients were treated with rituximab. The frequencies of circulating CD4+CXCR5+ICOS+T cells were analyzed by flow cytometry. The serum autoantibodies were detected by radioligand assay. The levels of IL-21, IL-6 and BCL-6 were assessed using ELISA and/or real-time PCR.ResultsIncreased frequencies of circulating Tfh cells together with enhanced expression of IL-21 were detected in patients. The correlation between the frequencies of circulating Tfh cells and the serum autoantibodies or C-peptide level was comfirmed. After rituximab therapy, follow-up analysis demonstrated that the frequencies of circulating Tfh cell and serum IA2A were decreased. The levels of IL-21, IL-6 and Bcl-6 mRNA were decreased after treatment. Furthermore, beta cell function in 10 of 20 patients was improved.ConclusionsThese data indicate Tfh cells may participate in the T1D-relatede immune responses and B cells might play a role in the development of Tfh responses in the disease progression.
Type 1 diabetes (T1D) is a highly heritable disease with much lower incidence but more adult-onset cases in the Chinese population. Although genome-wide association studies (GWAS) have identified >60 T1D loci in Caucasians, less is known in Asians. RESEARCH DESIGN AND METHODS We performed the first two-stage GWAS of T1D using 2,596 autoantibody-positive T1D case subjects and 5,082 control subjects in a Chinese Han population and evaluated the associations between the identified T1D risk loci and age and fasting C-peptide levels at T1D diagnosis. RESULTS We observed a high genetic correlation between children/adolescents and adult T1D case subjects (r g = 0.87), as well as subgroups of autoantibody status (r g ‡ 0.90). We identified four T1D risk loci reaching genome-wide significance in the Chinese Han population, including two novel loci, rs4320356 near BTN3A1 (odds ratio [OR] 1.26,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.