Traditional steel drill pipes can no longer meet the requirements of complex wells with ultradeep, ultrahigh pressure, and long horizontal section; hence, titanium alloy drill pipes are an ideal substitute. This paper explores how titanium drill pipes behave in complex wells. The extrusion and tensile test of titanium alloy pipe was first established. Then, based on the experimental data, the downhole mechanical behavior of a titanium alloy drill pipe was studied from the buckling, contact force, and operating friction with an actual complex well. Meanwhile, the mechanism of friction reduction is analyzed and discussed. The research achievements indicate that the strength of a titanium alloy drill pipe is equal to that of a steel pipe and has good plastic deformation capacity. The titanium alloy drill pipe is more prone to buckling during operation, but it has a smaller contact force, which can effectively reduce the operation friction. It was found that the influent of buckling on slide force was much less than of the gravity and stiffness by mechanism analysis. The research achievements can provide specific theoretical and practical references for the revelation of the mechanical behavior and functional performance of titanium alloy drill pipe in the field operation.
Adsorbent is an important waste water-based drilling fluid treatment agent, which can adsorb and settle heavy metal ions, high polymer organics, and other soluble harmful substances in the waste drilling fluid. Traditional adsorbents such as polyaluminum chloride and polyacrylamide will produce other metal ions or toxic monomers after hydrolysis, which cannot fully meet the requirements of safety and environmental protection. Therefore, a new environmentally friendly waste water-based drilling fluid adsorbent, named RH-β-CD, was prepared by the Wilson etherification reaction, which was initiated by epichlorohydrin and ceric ammonium nitrate, and successfully grafted rhamnolipid and amine strong adsorption groups onto β-cyclodextrin. The adsorption effect and environmental protection performance of RH-β-CD on the organic matter and chromium ion in waste sulfonated water-based drilling fluid were evaluated and compared with commonly used adsorbents such as activated carbon, PAM, and polyaluminum chloride. The results show that RH-β-CD can effectively adsorb the organic matter in the filtrate of waste water-based drilling fluids, reduce its chemical oxygen consumption, and reduce the concentration of heavy metal ions in the filtrate. The effect is better than PAM, activated carbon, and polyaluminum chloride, with the BOD5/CODcr >20% and EC50 >1,000,000 mg·L−1, which is environmentally friendly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.