Specific patterns of neuronal firing induce changes in synaptic strength that may contribute to learning and memory. If the postsynaptic NMDA (N-methyl-D-aspartate) receptors are blocked, long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and the learning of spatial information are prevented. The NMDA receptor can bind a protein known as postsynaptic density-95 (PSD-95), which may regulate the localization of and/or signalling by the receptor. In mutant mice lacking PSD-95, the frequency function of NMDA-dependent LTP and LTD is shifted to produce strikingly enhanced LTP at different frequencies of synaptic stimulation. In keeping with neural-network models that incorporate bidirectional learning rules, this frequency shift is accompanied by severely impaired spatial learning. Synaptic NMDA-receptor currents, subunit expression, localization and synaptic morphology are all unaffected in the mutant mice. PSD-95 thus appears to be important in coupling the NMDA receptor to pathways that control bidirectional synaptic plasticity and learning.
Zinc is present in presynaptic nerve terminals throughout the mammalian central nervous system and likely serves as an endogenous signaling substance. However, excessive exposure to extracellular zinc can damage central neurons. After transient forebrain ischemia in rats, chelatable zinc accumulated specifically in degenerating neurons in the hippocampal hilus and CA1, as well as in the cerebral cortex, thalamus, striatum, and amygdala. This accumulation preceded neurodegeneration, which could be prevented by the intraventricular injection of a zinc chelating agent. The toxic influx of zinc may be a key mechanism underlying selective neuronal death after transient global ischemic insults.
Background and Purpose: Infarct volume is one of the common indexes for assessing the extent of ischemic brain injury following focal cerebral ischemia. Accuracy in the measurement of infarct volume is compounded by postischemic brain edema that may increase brain volume in the infarcted region. We evaluated the effect of brain edema on infarct volume determined by triphenyltetrazolium chloride and hematoxylin and eosin stains in a focal cerebral ischemia model in rats.Methods: In a middle cerebral artery occlusion model in rats, infarction is confined to the cerebral cortex. The infarct was delineated by triphenyltetrazolium chloride stain and, in selected samples, by hematoxylin and eosin stain. We determined infarct size at different times after the ischemic insult (6 hours to 7 days) in relation to the evolution of brain edema by the direct measurement of infarct volume. Indirect measurement to reduce the effect of edema on infarct volume was also conducted in the same brain samples.Results: Direct measurement showed that infarct volume fluctuated with the evolution of brain edema (one-way analysis of variance, p
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.