This paper provides an efficient way of addressing the problem of detecting or estimating the 6-Dimensional (6D) pose of objects from an RGB image. A quaternion is used to define an object′s three-dimensional pose, but the pose represented by q and the pose represented by -q are equivalent, and the L2 loss between them is very large. Therefore, we define a new quaternion pose loss function to solve this problem. Based on this, we designed a new convolutional neural network named Q-Net to estimate an object’s pose. Considering that the quaternion′s output is a unit vector, a normalization layer is added in Q-Net to hold the output of pose on a four-dimensional unit sphere. We propose a new algorithm, called the Bounding Box Equation, to obtain 3D translation quickly and effectively from 2D bounding boxes. The algorithm uses an entirely new way of assessing the 3D rotation (R) and 3D translation rotation (t) in only one RGB image. This method can upgrade any traditional 2D-box prediction algorithm to a 3D prediction model. We evaluated our model using the LineMod dataset, and experiments have shown that our methodology is more acceptable and efficient in terms of L2 loss and computational time.
Cotton is an important economic crop, but large-scale field extraction and estimation can be difficult, particularly in areas where cotton fields are small and discretely distributed. Moreover, cotton and soybean are cultivated together in some areas, further increasing the difficulty of cotton extraction. In this paper, an innovative method for cotton area estimation using Sentinel-2 images, land use status data (LUSD), and field survey data is proposed. Three areas in Hubei province (i.e., Jingzhou, Xiaogan, and Huanggang) were used as research sites to test the performance of the proposed extraction method. First, the Sentinel-2 images were spatially constrained using LUSD categories of irrigated land and dry land. Seven classification schemes were created based on spectral features, vegetation index (VI) features, and texture features, which were then used to generate the SVM classifier. To minimize misclassification between cotton and soybean fields, the cotton and soybean separation index (CSSDI) was introduced based on the red band and red-edge band of Sentinel-2. The configuration combining VI and spectral features yielded the best cotton extraction results, with F1 scores of 86.93%, 80.11%, and 71.58% for Jingzhou, Xiaogan, and Huanggang. When CSSDI was incorporated, the F1 score for Huanggang increased to 79.33%. An alternative approach using LUSD for non-target sample augmentation was also introduced. The method was used for Huangmei county, resulting in an F1 score of 78.69% and an area error of 7.01%. These results demonstrate the potential of the proposed method to extract cotton cultivated areas, particularly in regions with smaller and scattered plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.