Sex pheromones play an essential role when moths are searching for mates. Male olfactory receptor neurons (ORNs) are the primary determinant during peripheral pheromone recognition. Here, we identified the sex pheromones of a global agricultural pest, Mythimna loreyi, using gas chromatography coupled with mass spectrometry and electroantennographic detection. Nine pheromone components were identified, including (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), and (Z)-11-hexadecen-1-yl acetate (Z11-16:OAc), and the first two elicited electrophysiological activities in the male antennae. Trichoid sensilla were classified into four functional types on the basis of neuronal responses to pheromones by single sensillum recording. Five functional ORNs were involved in recognizing pheromones and pheromone analogues. Finally, a field bioassay revealed that a blend of Z9-14:OAc, Z7-12:OAc, and Z11-16:OAc at a ratio of 100:8.8:19.7 was highly efficient for trapping males. Our results uncover the pheromone recognition mechanism in M. loreyi and provide a novel angle for developing efficient sex attractants of pests on the basis of screening the peripheral olfactory neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.