Colorectal cancer (CRC) is a malignancy of the colon or rectum. It is ranked as the third most common cancer in both men and women worldwide. Early resection permitted by early detection is the best treatment, and chemotherapy is another main treatment, particularly for patients with advanced CRC. A well-known thymidylate synthase (TS) inhibitor, 5-fluorouracil (5-FU), is frequently prescribed to CRC patients; however, drug resistance is a critical limitation of its clinical application. Based on the hypothesis that Coptidis Rhizoma extract (CRE) can abolish this 5-FU resistance, we explored the efficacy and underlying mechanisms of CRE in 5-FU-resistant (HCT116/R) and parental HCT116 (HCT116/WT) cells. Compared to treatment with 5-FU alone, combination treatment with CRE and 5-FU drastically reduced the viability of HCT116/R cells. The cell cycle distribution assay showed significant induction of the G0/G1 phase arrest by co-treatment with CRE and 5-FU. In addition, the combination of CRE and 5-FU notably suppressed the activity of TS, which was overexpressed in HCT116/R cells, as compared to HCT116/WT cells. Our findings support the potential of CRE as an adjuvant agent against 5-FU-resistant colorectal cancers and indicate that the underlying mechanisms might involve inhibition of TS expression.
Colorectal cancer (CRC) is the second most lethal malignancy worldwide. The high mortality rate of CRC is largely due to cancer metastasis. Recently, suppressing epithelial-to-mesenchymal transition (EMT) has been considered a promising strategy for treating metastatic cancer, especially drug-resistant metastatic cancer. The present study aimed to evaluate the antimetastatic effect of Coptidis Rhizoma, as well as the potential underlying mechanisms, using a 5-fluorouracil-resistant colon tumor cell model (HCT116/R). Coptidis Rhizoma 30% ethanol extract (CRE) significantly inhibited HCT116/R cells migration and invasion. CRE effectively inhibited EMT in HCT116/R cells by upregulating the expression of an epithelial marker (E-cadherin) and downregulating the expression of mesenchymal markers (vimentin, Snail, and ZEB2) at both the protein and gene levels. Immunofluorescence assays also confirmed consistent patterns in the levels of E-cadherin and vimentin. In addition, the anti-EMT activity of CRE and its related effects were associated with the CRE-mediated suppression of the TGF-β pathway, as shown by changes in the levels of downstream molecules (phosphorylated Akt and p38), and inhibition of migration, invasion, and protein expression of TGF-β after treatment/cotreatment with a TGF-β inhibitor (SB431542). In conclusion, Coptidis Rhizoma exerts an antimetastatic effect, especially in the treatment of drug-resistant cancer, and the possible mechanisms are associated with inhibiting EMT via TGF-β signaling. Thus, Coptidis Rhizoma will likely become a potential therapeutic candidate for simultaneously mitigating drug resistance and metastasis in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.