have been deposited in the NCBI's Sequence Read Archive (accession no. PRJNA293873). RNA-seq data for specific transcripts were validated by quantitative PCR as previously described (4).Statistics. Data are presented as the mean ± SEM. Results were analyzed using a 2-tailed Student's t test. A P value of less than 0.05 was considered statistically significant.Study approval.
Oocytes in embryonic ovaries enter meiosis I and arrest in the diplonema stage. Perturbations in meiosis I, such as abnormal double-strand break (DSB) formation and repair, adversely affect oocyte survival. We previously discovered that HORMAD1 is a critical component of the synaptonemal complex but not essential for oocyte survival. No significant differences were observed in the number of primordial, primary, secondary, and developing follicles between wild-type and Hormad1(−/−)newborn, 8-day, and 80-day ovaries. Meiosis I progression in Hormad1(−/−) embryonic ovaries was normal through the zygotene stage and in oocytes arrested in diplonema; however, we did not visualize oocytes with completely synapsed chromosomes. We investigated effects of HORMAD1 deficiency on the kinetics of DNA DSB formation and repair in the mouse ovary. We irradiated Embryonic Day 16.5 wild-type and Hormad1(−/−) ovaries and monitored DSB repair using gammaH2AX, RAD51, and DMC1 immunofluorescence. Our results showed a significant drop in unrepaired DSBs in the irradiated Hormad1(−/−) zygotene oocytes as compared to the wild-type oocytes. Moreover, Hormad1 deficiency rescued Dmc1(−/−) oocytes. These results indicate that Hormad1 deficiency promotes DMC1-independent DSB repairs, which in turn helps asynaptic Hormad1(−/−) oocytes resist perinatal loss.
Purpose To understand the mechanism of premature ovarian failure (POF). Methods The ultrastructural (electron microscopy) analysis of primordial ovarian follicles in Nobox deficient mice. Results We studied, for the first time, the fate of oogonia in embryonic (prenatal) mouse ovaries and showed that the abolishment of the transition from germ cell cysts to primordial follicles in the ovaries of Nobox deficient mice is caused by defects in germ cell cyst breakdown, leading to the formation of syncytial follicles instead of primordial follicles. Conclusions These results indicate that POF syndrome in Nobox deficient mice results from the faulty signaling between somatic and germ line components during embryonic development. In addition, the extremely unusual and abnormal presence of adherens junctions between unseparated oocytes within syncytial follicles indicates that faulty communication between somatic and germ cells is involved in, or leads to, abnormalities in the cell adhesion program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.