The current study examined the predictive ability of discrimination-related variables, coping mechanisms, and sociodemographic factors on the psychological distress level of Korean immigrants in the U.S. amid the COVID-19 pandemic. Korean immigrants (both foreign-born and U.S.-born) in the U.S. above the age of 18 were invited to participate in an online survey through purposive sampling. In order to verify the variables predicting the level of psychological distress on the final sample from 42 states (n = 790), the Artificial Neural Network (ANN) analysis, which is able to examine complex non-linear interactions among variables, was conducted. The most critical predicting variables in the neural network were a person’s resilience, experiences of everyday discrimination, and perception that racial discrimination toward Asians has increased in the U.S. since the beginning of the COVID-19 pandemic.
Australia has suffered devastating wildfires recently, and is predisposed to them due to several factors, including topography, meteorology, vegetation, and ignition sources. This study utilized a geographic information system (GIS) technique to analyze and understand the factors that regulate the spatial distribution of wildfire incidents and machine learning to predict wildfire susceptibility in Sydney. Wildfire inventory data were constructed by combining the fire perimeter through field surveys and fire occurrence data gathered from the visible infrared imaging radiometer suite (VIIRS)-Suomi thermal anomalies product between 2011 and 2020 for the Sydney area. Sixteen wildfire-related factors were acquired to assess the potential of machine learning based on support vector regression (SVR) and various metaheuristic approaches (GWO and PSO) for wildfire susceptibility mapping in Sydney. In addition, the 2019–2020 “Black Summer” fire acted as a validation dataset to assess the predictive capability of the developed model. Furthermore, the information gain ratio (IGR) method showed that driving factors such as land use, forest type, and slope degree have a large impact on wildfire susceptibility in the study area, and the frequency ratio (FR) method represented how the factors influence wildfire occurrence. Model evaluation based on area under the curve (AUC) and root average square error (RMSE) were used, and the outputs showed that the hybrid-based SVR-PSO (AUC = 0.882, RMSE = 0.006) model performed better than the standalone SVR (AUC = 0.837, RMSE = 0.097) and SVR-GWO (AUC = 0.873, RMSE = 0.080) models. Thus, optimizing SVR with metaheuristics improved the accuracy of wildfire susceptibility modeling in the study area. The proposed framework can be an alternative to the modeling approach and can be adapted for any research related to the susceptibility of different disturbances.
Plumas National Forest, located in the Butte and Plumas counties, has experienced devastating wildfires in recent years, resulting in substantial economic losses and threatening the safety of people. Mapping damaged areas and assessing wildfire susceptibility are necessary to prevent, mitigate, and manage wildfires. In this study, a wildfire susceptibility map was generated using a CNN and metaheuristic optimization algorithms (GWO and ICA) based on images of areas damaged by wildfires. The locations of damaged areas were identified using the damage proxy map (DPM) technique from Sentinel-1 synthetic aperture radar (SAR) data collected from 2016 to 2020. The DPMs’ depicting areas damaged by wildfires were similar to fire perimeters obtained from the California Department of Forestry and Fire Protection (CAL FIRE). Data regarding damaged areas were divided into a training set (50%) for modeling and a testing set (50%) for assessing the accuracy of the models. Sixteen conditioning factors, categorized as topographical, meteorological, environmental, and anthropological factors, were selected to construct the models. The wildfire susceptibility models were evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and root mean square error (RMSE) analysis. The evaluation results revealed that the hybrid-based CNN-GWO model (AUC = 0.974, RMSE = 0.334) exhibited better performance than the CNN (AUC = 0.934, RMSE = 0.780) and CNN-ICA (AUC = 0.950, RMSE = 0.350) models. Therefore, we conclude that optimizing a CNN with metaheuristics considerably increased the accuracy and reliability of wildfire susceptibility mapping in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.