The present study was conducted to evaluate and compare the effects of various animal and plant protein sources on piglet's performance, digestibility of amino acids and gut morphology in weaned pigs until 28 days after weaning. The plant protein sources used were soybean meal (SBM), fermented soy protein (FSP), rice protein concentrate (RPC); and animal protein sources tested were, whey protein concentrate (WPC) and fishmeal (FM). Iso-proteinous (21%) diets were formulated and lysine (1.55%) content was similar in all the diets. The level of each protein source added was 6% by replacing SBM to the same extent from the control diet containing 15% SBM. The ADG was higher (p<0.05) in the groups fed animal proteins as compared with plant proteins at all the levels of measurement, except during 15-28 days. The highest ADG was noted in WPC and FM fed diets and lowest in SBM fed diet. The feed intake was higher in animal protein fed groups than plant proteins at all phases, but the feed:gain ratio was not affected by protein sources except during overall (0 to 14 day) measurement which was improved (p<0.05) in animal protein fed diets compared to plant protein sources. The digestibilities of gross energy, dry matter and crude protein were higher in animal protein fed groups than for plant protein fed sources. The apparent ileal digestibilities of essential amino acids like Leu, Thr, and Met were significantly (p<0.05) higher in animal proteins fed animals as compared with plant protein fed animals. But the apparent fecal digestibilities of essential amino acids like Arg and Ile were significantly higher (p<0.05) in plant protein diets than animal protein sources. The villous structure studied by scanning electron microscope were prominent, straight finger-like, although shortened and densely located in FM fed group as compared with others. The lactic acid bacteria and C. perfringens counts were higher in caecal contents of pigs fed plant proteins than the animal proteins. Overall, it could be concluded that animal protein sources in the present study showed better effects on growth performance, nutrient digestibility and gut morphology than plant protein sources.
BACKGROUND AND OBJECTIVE: Post-traumatic stress disorder (PTSD) is a chronic mental disorder caused by mental or psychological trauma after sudden events of a catastrophic or threatening nature. Synaptic plasticity is the core mechanism of PTSD and the main point of treatment of this disease. METHODS: Male Sprague Dawley rats were randomly divided into blank control (Ctrl), SPS (single-prolonged stress) model, SPS&S model (SPS and foot electric shock), SPS+EA (SPS plus electroacupuncture), and SPS&S+EA groups. Tranquilize Mind and Regulate Kidney (TMRK) electroacupuncture method was performed in each rat in the SPS+EA and SPS&S+EA groups, the treatment lasted for 20 minutes per day, simultaneously for 3 consecutive weeks. Behavioral evaluations, molecular tests, electron microscopy, electrophysiological testing were conducted following the treatment. RESULTS: First, electro-acupuncture can significantly improve the PTSD-like symptoms. Second, electro-acupuncture can up-regulate the long-term potentiation (LTP) in hippocampus, repair the synaptic morphology and improve BDNF levels in amygdala and hippocampus. Third, electroacupuncture can significantly up-regulate SYN, GAP43, and PSD95 protein levels and mRNA expression in amygdala and hippocampus. CONCLUSIONS: The effect of TMRK electro-acupuncture method on the regression of fear memory of PTSD rats may be through its repair of synaptic plasticity in amygdala and hippocampus.
These experiments were conducted to evaluate the feeding value of rice protein concentrate (RPC) in weaning pigs. In expt. I, a 5-week feeding trial was conducted with 126 pigs (L×Y×D; 21 d-old; 5.32±0.34 kg). Treatments were spray-dried plasma protein (SDPP; control), soy protein concentrate (SPC) and RPC (phase 1), and dried porcine soluble (DPS; control), SPC and RPC (phase 2). An ileal digestibility trial was also conducted to compare digestibility of amino acids in the tested protein sources. In expt. II, 160 weaning pigs (L×Y×D; 21 d-old; 5.65±0.35 kg) were used in a 5-week feeding trial to determine the optimal inclusion level of RPC in the diet. Treatments were control (9% SPC), and three levels of RPC instead of SPC in the diets (3, 6 and 9%). During phase 1, pigs fed SDPP showed better (p<0.05) ADG and FCR compared with those fed SPC or RPC, while there was no difference in ADFI among treatments. During phase 2, however, pigs fed DPS showed lower (p<0.05) ADG than those fed SPC or RPC. During the total period, there were no significant differences in ADG, ADFI and FCR among treatments. The apparent ileal digestibilities of his, lys, phe, thr and met were not different among the tested protein sources. The apparent ileal digestibilities of arg, ile, leu and val were lower (p<0.05) in RPC than SDPP. The true ileal digestibilities of arg and leu were lower (p<0.05) in RPC than SDPP and SPC. However, that of met was higher (p<0.05) in RPC than SDPP. In expt. II, there were no significant differences in ADG and FCR when SPC was substituted with RPC up to 9% during the total period. In conclusion, based on our experimental results, RPC would replace SPC in the complex prestarter diet, which is somewhat cheaper than SPC.
Depression, also called “depression disorder,” is characterized by a significant and persistent low mood. It has become a major refractory disease in the 21st century. In recent years, Chinese medicine has shown some important clinical value in the treatment of depression. Among them, the Warming and “Tonifying” Kidney‐Yang Recipe (WTKYR) has been demonstrated to have obvious effects in the clinical treatments of depression; however, the mechanism remains unclear. This study is based on the adenylyl cyclase (AC)—cyclic adenosine monophosphate (cAMP)—protein kinase A (PKA)—cAMP response element‐binding protein (CREB)—brain derived neurotrophic factor (BDNF) signaling pathway, aiming to investigate the mechanism of WTKYR. The results showed that WTKYR can upregulate AC‐cAMP‐PKA‐CREB‐BDNF in the hippocampus of depression model rats and alleviate its depressive symptoms, which may be the mechanism of WTKYR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.