A motor core is formed by stacking iron sheets on top of each other. Traditionally, there are two stacking methods, riveting and welding, but these two methods will increase iron loss and reduce usage efficiency. The use of resin is the current developmental trend in the technology used to join iron sheets, which has advantages including lowering iron loss, smoothing magnetic circuits, and generating higher rigidity. The flow behavior of resin in gluing technology is very important because it affects the dipping of iron sheets and the stacking of iron sheets with resin. In this study, a set of analytical processes is proposed to predict the flow behavior of resin through the use of computer-aided engineering (CAE) tools. The research results are compared with the experimental results to verify the accuracy of the CAE tools in predicting resin flow. CAE tools can be used to predict results, modify modules for possible defects, and reduce the time and costs associated with experiments. The obtained simulation results showed that the filling trend was the same as that for the experimental results, where the error between the simulation results for the final dipping process and the target value was 0.6%. In addition, the position of air traps is also simulated in the dipping process.
To improve the production yield rate, reliability is one of the important indicators of electronic packaging products. In past research, however, the influence of the fabrication process was rarely taken into consideration. In this thesis, mold flow analysis software Moldex3D is used to develop a series analysis procedure for IC package products. The effects of many factors, including process, structure, and materials were being taken into account. Especially for epoxy molding compound, namely EMC, is studied on its properties during the molding and post-mold cure (PMC) processes. This paper adopted P–V-T-C equations, which consider both volume shrinkage due to thermal mismatch and chemical shrinkage to predict the amount of warpage and residual stresses after the mold filling process. Next, dual shift factor model for viscoelastic analysis was used to model the PMC process and predict the amount of warpage and residual stresses after PMC. And the influence of different PMC process conditions and loading conditions on the warpage results is discussed. The residual stresses after PMC simulation are set as the initial conditions for reliability analysis and then the stress distribution after two thermal cycles is analyzed. It is observed that the deformed shape of the simulation and experiment results after PMC were consistent. Both are concave downwards. In comparison with experiment results, the error of warpage simulation results was between 10% and 50%. The biggest error was found in the short direction. During two thermal cycles, it is can be found that the maximum stress of the lead frame is 505.7 MPa and the location of the possible failure is at the top left of the die. In addition, when considering or not considering the process-induced residual stress in the thermal cycle analysis, the stress states are very different.
The actual process of using a resin to glue can optimize many shortcomings in the basic traditional process of welding a motor core. For example, the use of a resin for gluing can lead to a reduction in iron loss, improve rigidity, reduce processing times, and improve product quality. When using a gluing method, the biggest challenge is the distribution of the resin; therefore, resin distribution is very much important. This experiment used fine mesh nets to eventually improve the unbalanced state of resin distribution. In this research, in order to predict real flow behavior during gluing, computer-aided engineering was used for computer simulation. The results of the simulation showed that the illustrated trend of the filling process was very much similar to the actual experimental results. The simulation results could mostly predict defects and make effective improvements, which can lead to a significant reduction in the money and time spent on experiments. The simulation results of the dipping process also showed that the distribution of resin with fine mesh nets was more even than without fine mesh nets. Fine mesh nets can eventually improve an over-flow problem, which, ultimately, causes bumps. In this research, a simulation analysis of the gluing process of a motor core with fine mesh nets was conducted, and the results show that the resin distribution and the flow front of the runner were more even than those without fine mesh nets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.