Sustainable development is crucial to humanity. Utilization of primary socio-environmental data for analysis is essential for informing decision making by policy makers about sustainability in development. Artificial intelligence (AI)-based approaches are useful for analyzing data. However, it was not easy for people who are not trained in computer science to use AI. The significance and novelty of this paper is that it shows how the use of AI can be democratized via a user-friendly human-centric probabilistic reasoning approach. Using this approach, analysts who are not computer scientists can also use AI to analyze sustainability-related EPI data. Further, this human-centric probabilistic reasoning approach can also be used as cognitive scaffolding to educe AI-Thinking in the analysts to ask more questions and provide decision making support to inform policy making in sustainable development. This paper uses the 2018 Environmental Performance Index (EPI) data from 180 countries which includes performance indicators covering environmental health and ecosystem vitality. AI-based predictive modeling techniques are applied on 2018 EPI data to reveal the hidden tensions between the two fundamental dimensions of sustainable development: (1) environmental health; which improves with economic growth and increasing affluence; and (2) ecosystem vitality, which worsens due to industrialization and urbanization.
According to the World Bank, a key factor to poverty reduction and improving prosperity is financial inclusion. Financial service providers (FSPs) offering financially-inclusive solutions need to understand how to approach the underserved successfully. The application of artificial intelligence (AI) on legacy data can help FSPs to anticipate how prospective customers may respond when they are approached. However, it remains challenging for FSPs who are not well-versed in computer programming to implement AI projects. This paper proffers a no-coding human-centric AI-based approach to simulate the possible dynamics between the financial profiles of prospective customers collected from 45,211 contact encounters and predict their intentions toward the financial products being offered. This approach contributes to the literature by illustrating how AI for social good can also be accessible for people who are not well-versed in computer science. A rudimentary AI-based predictive modeling approach that does not require programming skills will be illustrated in this paper. In these AI-generated multi-criteria optimizations, analysts in FSPs can simulate scenarios to better understand their prospective customers. In conjunction with the usage of AI, this paper also suggests how AI-Thinking could be utilized as a cognitive scaffold for educing (drawing out) actionable insights to advance financial inclusion.
According to the World Health Organization (WHO) and the World Bank, malnutrition is one of the most serious but least-addressed development challenges in the world. Malnutrition refers to the malfunction or imbalance of nutrition, which could be influenced not only by under-nourishment, but also by over-nourishment. The significance of this paper is that it shows how artificial intelligence (AI) can be democratized to enable analysts who are not trained in computer science to also use human-centric explainable-AI to simulate the possible dynamics between malnutrition, health and population indicators in a dataset collected from 180 countries by the World Bank. This AI-based human-centric probabilistic reasoning approach can also be used as a cognitive scaffold to educe (draw out) AI-Thinking in analysts to ask further questions and gain deeper insights. In this study, a rudimentary beginner-friendly AI-based Bayesian predictive modeling approach was used to demonstrate how human-centric probabilistic reasoning could be utilized to analyze the dynamics of global malnutrition and optimize conditions for achieving the best-case scenario. Conditions of the worst-case “Black Swan” scenario were also simulated, and they could be used to inform stakeholders to prevent them from happening. Thus, the nutritional and health status of vulnerable populations could be ameliorated.
Unabated pressures on food systems affect food security on a global scale. A human-centric artificial intelligence-based probabilistic approach is used in this paper to perform a unified analysis of data from the Global Food Security Index (GFSI). The significance of this intuitive probabilistic reasoning approach for predictive forecasting lies in its simplicity and user-friendliness to people who may not be trained in classical computer science or in software programming. In this approach, predictive modeling using a counterfactual probabilistic reasoning analysis of the GFSI dataset can be utilized to reveal the interplay and tensions between the variables that underlie food affordability, food availability, food quality and safety, and the resilience of natural resources. Exemplars are provided in this paper to illustrate how computational simulations can be used to produce forecasts of good and bad conditions in food security using multi-variant optimizations. The forecast of these future scenarios is useful for informing policy makers and stakeholders across domain verticals, so they can make decisions that are favorable to global food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.