To reduce the cost of high-viscosity modifier (HVM) and alleviate white pollution problems, we prepared the environment-friendly HVM (E-HVM) by using waste-low density polyethylene/styrene-butadiene-styrene (waste-LDPE/SBS) composite. The physical characteristics of the E-HVM modifier were first investigated. Additionally, the effects of E-HVM modifier dosage (8 wt% to 20 wt%) on the rheological properties and microstructure of asphalt were, respectively, researched by dynamic shear rheometer (DSR), bending beam rheometer (BBR), and fluorescence microscopy (FM). The results show that the E-HVM modifier has lower molecular weight, and its distribution is wider than that of the Tafpack-Super (TPS) modifier; thus, the E-HVM modifier had better compatibility with asphalt, which has also been proven by FM images. Due to these reasons, the E-HVM modifier improves the high-temperature performances of asphalt more effectively than the TPS modifier, which is shown by the higher dynamic viscosity (60 °C) and G* and the lower and Jnr (τ). Furthermore, compared to TPS modified asphalt, E-HVM modified asphalt also has a higher fatigue life at different strain levels (2.5% and 5.0%), but worse low-temperature performance. Following a comprehensive consideration of performances, the reasonable dosage range of E-HVM modifier is 12 wt% to 16 wt%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.