Twenty weaned piglets with initial body weight of 6.83 ± 0.33 kg (21 day of age, LYD) were randomly assigned to four treatments for a two-week feeding trial to determine the effects of different dietary zinc on nutrient digestibility, intestinal health, and microbiome of weaned piglets. The dietary treatments included a negative control (CON), standard ZnO (ZnO, 2500 ppm), zinc chelate with glycine (Chelate-ZnO, 200 ppm), and nanoparticle-sized ZnO (Nano-ZnO, 200 ppm). At 0 to 1 week, the diarrhea score was decreased in the CON group compared with the ZnO, Chelate-ZnO, and Nano-ZnO group. In overall period, the ZnO and Nano-ZnO groups exhibited improved diarrhea scores compared to the CON group. The apparent total tract digestibility of dry matter and gross energy was the lowest in the CON group after one week. Compared to the ZnO group, the chelate-ZnO group exhibited higher proportion of T-bet+ and FoxP3+ T cells and the nano-ZnO group had higher numbers of RORgt+ and GATA3+ T cells in the mesenteric lymph nodes. ZnO group increased IL-6 and IL-8 levels in the colon tissues and these positive effects were observed in both chelate ZnO and nano-ZnO groups with lower level. The 16S rRNA gene analysis showed that the relative abundance of Prevotella was higher in the ZnO-treated groups than in the CON group and that of Succinivibrio was the highest in the nano-ZnO group. The relative abundance of Lactobacillus increased in the ZnO group. In conclusion, low nano-ZnO levels have similar effects on nutrient digestibility, fecal microflora, and intestinal immune profiles in weaning pigs; thus, nano-ZnO could be used as a ZnO alternative for promoting ZnO utilization and intestinal immunity.
Abstract-In high-speed printed circuit boards, the decoupling capacitors are commonly used to mitigate the power-bus noise that causes many signal integrity problems. It is very important to determine their proper locations and values so that the power distribution network should have low impedance over a wide range of frequencies, which demands a precise power-bus model considering the decoupling capacitors. However, conventional power-bus models suffer from various problems, i.e., the numerical analyzes require huge computation while the lumped circuit models show poor accuracy. In this paper, a novel power-bus model has been proposed, which simplifies the n-port Z-parameters of a power-bus plane to a lumped T-network circuit model. It exploits the pathbased equivalent circuit model to consider the interference of the current paths between the decoupling capacitors, while the conventional lumped models assume that all decoupling capacitors are connected in parallel, independently with each other. It also models the equivalent electrical parameters of the board parasitic precisely, while the conventional lumped models employ only the inter-plane capacitance of the power-ground planes. Although it is a lumped model for fast and easy calculation, experimental results show that the proposed model is almost as precise as the numerical analysis. Consequently, the proposed model enables a quick and accurate optimization of power distribution networks in the frequency domain by determining the locations and values of the decoupling capacitors.Index Terms-Decoupling capacitors, equivalent circuit model, power-bus distribution network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.