The worldwide transition from analog to digital broadcasting has now been completed, and the need to study next-generation standards for ultra-high-definition TV (UHDTV) broadcasting, as well as broadcasting and communication convergence systems is rapidly growing. In particular, high-resolution mobile broadcasting services are needed to satisfy recent consumer demands. Therefore, the development of highly efficient convergence broadcasting systems that provide fixed/mobile broadcasting through a single channel is needed. In this paper, a service scenario and the requirements for providing 4 K UHD and high-definition (HD) convergence broadcasting services through a terrestrial single channel are analyzed by employing the latest transmission and video codec technologies. Optimized transmission parameters for 6-and 8-MHz terrestrial bandwidths are drawn, and receiving performances are measured under additive white Gaussian noise (AWGN) and time-varying typical urban (TU)-6 channel to find the threshold of visibility (TOV). From the results, reliable receiving of HD layer data can be achieved at a 6-MHz bandwidth when the maximum receiver velocity is 140 km/h and no higher due to the limit of bandwidth. When the bandwidth is extended to 8 MHz, reliable receiving of both 4 K UHD and HD layer data can be achieved under a very fast fading multipath channel.
A filter bank multicarrier on offset-quadrature amplitude modulation (FBMC/OQAM) system is an alternative multicarrier modulation scheme that does not need cyclic prefix (CP) even in the presence of a multipath fading channel by the properties of prototype filter. The FBMC/OQAM system can be implemented either by using the poly-phase network with fast fourier transform (PPN-FFT) or by using the extended FFT on a frequency-spreading (FS) domain. In this paper, we propose an iterative channel estimation scheme for each sub channel of a FBMC/OQAM system over a frequency-spreading domain. The proposed scheme first estimates the channel using the received pilot signal in the subchannel domain and interpolates the estimated channel to fine frequency-spreading domain. Then the channel compensated FS domain pilot is despread again to modify the channel state information (CSI) estimation. Computer simulation shows that the proposed method outperforms the conventional FBMC/OQAM channel estimator in a frequency selective channel.
Recently, a convergence broadcasting transmission for providing fixed 4K ultrahigh-definition (UHD) and mobile high-definition (HD) services through a single terrestrial channel is investigated by employing multiple-physical layer pipe (M-PLP) multiplexing and transmission technologies in digital video broadcasting (DVB)-second-generation terrestrial (T2) systems, and the scalable high-efficiency video coding (SHVC) technique. The M-PLP technique employs different code rates and constellation points for each layer of data and multiplexes differently encoded layers of data into a single frame, with no change of the inverse fast Fourier transform (IFFT) and cyclic prefix (CP). However, the IFFT size should be increased, and the CP size should be decreased for the 4K UHD layer while the opposite is true for the HD layer. Another aspect is that HD layer data are more important than 4K UHD layer data for reliable SHVC decoding, and thus the IFFT size should be decreased and the CP size should be increased for the HD layer to be robust to channel situations. In this paper, the possibility of a terrestrial fixed 4K UHD and mobile HD convergence broadcasting service through a single channel employing the future extension frame (FEF) multiplexing technique is examined. FEF multiplexing technology can be used to adjust the IFFT and CP size for each layer, whereas M-PLP multiplexing technology Department of Electronic Engineering, Konkuk University, Seoul, Republic of Korea cannot. We described the convergence broadcasting service scenario and proposed a transmission system structure by employing FEF and transmission technologies in DVB-T2 systems. Available transmission parameters are extracted and the reception performance of the transmission parameters is examined using computer simulations. From the results, for the 6 and 8 MHz bandwidths, reliable reception of both fixed 4K UHD and mobile HD layer data can be achieved under a static and fast fading multipath channel.
In this paper, the service scenario & requirements for providing 4K UHD & HD convergence broadcasting services through terrestrial single channel are analyzed by employing the latest transmission and A/V codec technologies. Optimized transmission parameters for 6 MHz & 8 MHz terrestrial bandwidths are drawn, and receiving performances are measured under Additive White Gaussian Noise (AWGN) and time-varying multipath channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.