In-situ ammonium removal from municipal solid waste (MSW) landfill is an attractive method due to its economic advantages. In this study, two simulated MSW bioreactors with different degrees of initial bio-stabilization were utilized to investigate the effects of intermittent aeration mode and the addition of activated sludge on the removal of ammonium. The results showed that up to 90% of ammonium could be removed and the amount of NO(x)-N produced was less than 1% of NH4 (+)-N removed in both reactors. The pH values increased rapidly and finally arrived at a high level of 8.5-8.8. The efficiency of ammonium removal was improved by increasing the continuous aeration time, but it was not affected by the addition of activated sludge. A portion of liquid escaped from the reactors in the form of vapour, and as high as 195-258 mg L(-1) of NH(4) ( +)-N was detected in the vapour collector. According to calculation, nitrification was inhibited by the high level of free ammonia in the bioreactors. As a result, air stripping was enhanced and became the primary pathway of ammonium removal. Therefore, controlling free ammonia concentration was essential in ammonium removal from the aerated MSW bioreactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.