Hantaan virus is the prototypic member of the Hantavirus genus within the family Bunyaviridae and is a causative agent of the potentially fatal hemorrhagic fever with renal syndrome. The Bunyaviridae are a family of negative-sense RNA viruses with three-part segmented genomes. Virions are enveloped and decorated with spikes derived from a pair of glycoproteins (Gn and Gc). Here, we present cryo-electron tomography and single-particle cryo-electron microscopy studies of Hantaan virus virions. We have determined the structure of the tetrameric Gn-Gc spike complex to a resolution of 2.5 nm and show that spikes are ordered in lattices on the virion surface. Large cytoplasmic extensions associated with each Gn-Gc spike also form a lattice on the inner surface of the viral membrane. Rod-shaped ribonucleoprotein complexes are arranged into nearly parallel pairs and triplets within virions. Our results differ from the T21؍ icosahedral organization found for some bunyaviruses. However, a comparison of our results with the previous tomographic studies of the nonpathogenic Tula hantavirus indicates a common structural organization for hantaviruses.
In contrast to most negative-stranded RNA viruses, hantaviruses and other viruses in the family Bunyaviridae mature intracellularly, deriving the virion envelope from the endoplasmic reticulum (ER) or Golgi compartment. While it is generally accepted that Old World hantaviruses assemble and bud into the Golgi compartment, some studies with New World hantaviruses have raised the possibility of maturation at the plasma membrane as well. Overall, the steps leading to virion assembly remain largely undetermined for hantaviruses. Because hantaviruses do not have matrix proteins, the nucleocapsid protein (N) has been proposed to play a key role in assembly. Herein, we examine the intracellular trafficking and morphogenesis of the prototype Old World hantavirus, Hantaan virus (HTNV). Using confocal microscopy, we show that N colocalized with the ER-Golgi intermediate compartment (ERGIC) in HTNV-infected Vero E6 cells, not with the ER, Golgi compartment, or early endosomes. Brefeldin A, which effectively disperses the ER, the ERGIC, and Golgi membranes, redistributed N with the ERGIC, implicating membrane association; however, subcellular fractionation experiments showed the majority of N in particulate fractions. Confocal microscopy revealed that N was juxtaposed to and distributed along microtubules and, over time, became surrounded by vimentin cages. To probe cytoskeletal association further, we probed trafficking of N in cells treated with nocodazole and cytochalasin D, which depolymerize microtubules and actin, respectively. We show that nocodazole, but not cytochalasin D, affected the distribution of N and reduced levels of intracellular viral RNA. These results suggested the involvement of microtubules in trafficking of N, whose movement could occur via molecular motors such as dynein. Overexpression of dynamitin, which is associated with dynein-mediated transport, creates a dominant-negative phenotype blocking transport on microtubules. Overexpression of dynamitin reduced N accumulation in the perinuclear region, which further supports microtubule components in N trafficking. The combined results of these experiments support targeting of N to the ERGIC prior to its movement to the Golgi compartment and the requirement of an intact ERGIC for viral replication and, thus, the possibility of virus factories in this region.
Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [18F]-2-deoxy-2-fluoro-D-glucose ([18F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal progression of the inflammatory response of ferrets infected with a clinical isolate of a pandemic influenza virus, H1N1 (H1N1pdm). The thoracic regions of mock- and H1N1pdm-infected ferrets were imaged prior to infection and at 1, 2, 3 and 6 days post-infection (DPI). On 1 DPI, FDG-PET/CT imaging revealed areas of consolidation in the right caudal lobe which corresponded with elevated [18F]-FDG uptake (maximum standardized uptake values (SUVMax), 4.7–7.0). By days 2 and 3, consolidation (CT) and inflammation ([18F]-FDG) appeared in the left caudal lobe. By 6 DPI, CT images showed extensive areas of patchy ground-glass opacities (GGO) and consolidations with the largest lesions having high SUVMax (6.0–7.6). Viral shedding and replication were detected in most nasal, throat and rectal swabs and nasal turbinates and lungs on 1, 2 and 3 DPI, but not on day 7, respectively. In conclusion, molecular imaging of infected ferrets revealed a progressive consolidation on CT with corresponding [18F]-FDG uptake. Strong positive correlations were measured between SUVMax and bronchiolitis-related pathologic scoring (Spearman’s ρ = 0.75). Importantly, the extensive areas of patchy GGO and consolidation seen on CT in the ferret model at 6 DPI are similar to that reported for human H1N1pdm infections. In summary, these first molecular imaging studies of lower respiratory infection with H1N1pdm show that FDG-PET can give insight into the spatiotemporal progression of the inflammation in real-time.
Replication, cell tropism and the magnitude of the host's antiviral immune response each contribute to the resulting pathogenicity of influenza A viruses (IAV) in humans. In contrast to seasonal IAV in human cases, the 2009 H1N1 pandemic IAV (H1N1pdm) shows a greater tropism for infection of the lung similar to H5N1. We hypothesized that host responses during infection of well-differentiated, primary human bronchial epithelial cells (wd-NHBE) may differ between seasonal (H1N1 A/BN/59/07) and H1N1pdm isolates from a fatal (A/KY/180/10) and nonfatal (A/KY/136/09) case. For each virus, the level of infectious virus and host response to infection (gene expression and apical/basal cytokine/chemokine profiles) were measured in wd-NHBE at 8, 24, 36, 48 and 72 hours post-infection (hpi). At 24 and 36 hpi, KY/180 showed a significant, ten-fold higher titer as compared to the other two isolates. Apical cytokine/chemokine levels of IL-6, IL-8 and GRO were similar in wd-NHBE cells infected by each of these viruses. At 24 and 36 hpi, NHBE cells had greater levels of pro-inflammatory cytokines including IFN-α, CCL2, TNF-α, and CCL5, when infected by pandemic viruses as compared with seasonal. Polarization of IL-6 in wd-NHBE cells was greatest at 36 hpi for all isolates. Differential polarized secretion was suggested for CCL5 across isolates. Despite differences in viral titer across isolates, no significant differences were observed in KY/180 and KY/136 gene expression intensity profiles. Microarray profiles of wd-NHBE cells diverged at 36 hpi with 1647 genes commonly shared by wd-NHBE cells infected by pandemic, but not seasonal isolates. Significant differences were observed in cytokine signaling, apoptosis, and cytoskeletal arrangement pathways. Our studies revealed differences in temporal dynamics and basal levels of cytokine/chemokine responses of wd-NHBE cells infected with each isolate; however, wd-NHBE cell gene intensity profiles were not significantly different between the two pandemic isolates suggesting post-transcriptional or later differences in viral-host interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.